
Manifest Problems: Analyzing Code Transparency for Android Application Bundles

Florian Draschbacher
Graz University of Technology

Secure Information Technology Center Austria
Graz, Austria

florian.draschbacher@iaik.tugraz.at

Lukas Maar
Graz University of Technology

Graz, Austria
lukas.maar@iaik.tugraz.at

Abstract—In 2018, Google introduced a new app distribution
format called AAB (Android Application Bundle), which
replaced APK (Android Package) as the required format for
all new app submissions to Google Play in 2021. Apps are still
delivered to end users as APK files, but they are now generated
and signed on the app store operator’s infrastructure. Most
crucially, this change requires developers to hand over their
APK signing key to the app store operator, enabling them to
arbitrarily manipulate apps prior to delivery to end users. To
address this, Google has introduced the Code Transparency
scheme to verify the integrity of APKs generated from AAB
files. However, due to the lack of independent studies, the exact
security properties of Code Transparency remain unclear.

In this paper, we present the first comprehensive analysis
of the security of Code Transparency and the AAB format. We
thoroughly investigate the design and implementation of the
Code Transparency scheme, discussing in detail the technical
possibilities attackers have for manipulating apps that use
it. Additionally, we conduct a large-scale study on AAB and
Code Transparency in practice. To this end, we evaluate the
prevalence of both technologies among 3.5 million real-world
apps, analyze their susceptibility to our attacks, and carry out a
case study that demonstrates the practical security implications
of attacks on Code Transparency.

Our analyses indicate that Code Transparency suffers from
severe design and implementation flaws that allow app store
operators to execute code in the context of any app without
disturbing its Code Transparency signature.

Index Terms—Android Security, Code Transparency, Software
Integrity

1. Introduction

The adaptability to a wide range of hardware plat-
forms has been a significant advantage of Android in the
competitive mobile OS market. However, it has also led
to a fragmented device landscape and a wide range of
security and usability issues that continue to plague the
Android ecosystem. To address these issues, Google has made
considerable efforts, including initiatives such as Project
Treble [1], which simplified adapting OS updates to devices,

Project Mainline [2] to modularize the OS into components
updatable through Google Play, or Android Jetpack [3] which
provides developers with app building blocks that reliably
work across Android versions.

Another recent change in this series of initiatives was
the introduction of the Android Application Bundle (AAB)
format for packaging applications for submission to app
stores in 2018 [4]. Until that point, developers usually shipped
each application to app stores as a single universal APK file
containing resources for all supported device configurations.
App stores would then serve these exact files to end-user
devices, where the resources designed for other device
configurations would waste storage space. Although the
new AAB submission format contains compiled code and
resources for all possible device configurations as well, it only
serves as an intermediary format. The app store operator uses
it to ”generate and serve optimized APKs for each device
configuration” [5], which saves storage space and network
bandwidth.

Since the introduction of the AAB format, Google has
put a lot of effort into establishing it as the new distribution
standard for the entire Android app industry. In 2020, the
format was made mandatory for any new app submissions
to Google Play [6]. Since May 2023, all apps or updates
that support Android TV need to use the AAB format
[7]. The format has also been adopted by all major third-
party Android app stores, including Samsung’s Galaxy Store,
Huawei AppGallery, and Amazon Appstore.

However, besides improving the user experience, the
AAB format has considerable consequences for the security
architecture of the Android OS. The Android Platform
Security Model [8] considers the application developer one
of the three stakeholders that need to agree on sensitive
operations being carried out on the device. Specifically, it
is the application (on behalf of the application developer)
that decides on the access to login credentials or other
valuable user data stored in its private data folder. Since
the application encodes the developer’s intentions regarding
sensitive operations affecting the app and its data, it must
remain unmodified through the entire supply chain between
the developer and the end user. Any code injected into an
application somewhere along the supply chain would later
be executed in the process context of the application itself,

where it is able to alter its security policies.
The security consequences of AAB became particularly

problematic when Google in 2020 made it mandatory for
any new app submission to Google Play [6]. After the
developer community voiced its concerns regarding that
change [9], Google in 2021 introduced the optional Code
Transparency (CT) scheme for AAB files. It is intended to
provide cryptographically proofable integrity guarantees for
key parts of an Android application. Despite the security-
critical role of CT for the AAB format, the reliability of its
integrity guarantees has never been examined. Furthermore,
it remains entirely unclear how and if the scheme is used
in practice, whether it is deployed correctly, and whether its
design and implementation align with the reality of modern
mobile applications.

In this paper, we present the first comprehensive analysis
of the security of CT for the AAB format. We establish
attack scenarios against CT based on Google’s official
documentation, related supply-chain hardening techniques
and the Android Platform Security Model. From these attack
scenarios, we identify three design flaws in the CT scheme’s
design, as well as three flaws in the bundletool reference
implementation. As a key observation in our analysis, we
note that CT’s exclusive focus on Dalvik Executable (DEX)
and Shared Object (SO) files entirely neglects the powerful
role of resource files such as the app manifest on the Android
platform.

Subsequently, we show how an attacker can exploit the
identified flaws. We consider three attacker models of varying
power that are in line with Google’s Code Transparency
threat model. In these scenarios, a supply chain attacker
compromises the APK signing key to sign manipulated
app builds. The CT is supposed to help identify these
modifications. Yet, under all attacker models, the attacks
we identify allow gaining code execution in the context of
an application without invalidating its CT.

Furthermore, we investigate the use of AAB and CT in
practice. To this end, we carry out automated analyses on
more than 3.5 million Android applications from Google Play
and Huawei AppGallery. Our results show that despite the
serious security implications of the AAB format it was de-
signed to protect against, CT is almost non-existent (0.0014 %
of apps submitted as AAB) in real-world applications. We
also evaluate the eligibility for CT of the most popular apps
from Google Play. We find that if they used CT, more than
50 % of them would be susceptible to code execution attacks
even under the least powerful attacker model.

Overall, our results show that CT in its current form
is mostly ineffective and virtually unused. This leaves
developers unprotected against the security repercussions
of the AAB format, which they are increasingly pressed
to use. We therefore discuss possible improvements to CT
and suggest app distribution solutions that offer the same
advantages as AAB without compromising on security.

Contributions: To summarize, our key contributions are:
• We thoroughly analyze the design and implementation

of Code Transparency for Android Application Bundles,
identifying multiple flaws.

• We demonstrate attacks that exploit the identified flaws
to gain code execution or data access in the context of
target applications without invalidating their CT.

• We conduct the first large-scale survey of CT in practice,
analyzing applications from Google Play and Huawei
AppGallery. We evaluate their use of AAB and CT and
their susceptibility to the vulnerabilities we identified
in CT’s integrity guarantees.

Disclosure: We disclosed our findings to Google and are
currently discussing how to mitigate the attacks we identified,
ultimately improving Android security. One of the reported
issues already received a CVE1 and was fixed in Android
14.

Outline: Section 2 provides background on the Android
platform. Section 3 introduces the Android Application
Bundle format and Code Transparency scheme. In Section
4, we discuss our attack scenarios, which we use in our
security analysis in Section 5. Section 6 presents attacks
based on the identified flaws, before Section 7 evaluates
Code Transparency in practice. We discuss our findings
in Section 8, elaborate on related work in Section 9, and
conclude our paper in Section 10.

2. Background

2.1. Android and its Security Architecture

Android is the most popular operating system for mobile
devices, most notably for smartphones. To facilitate adoption
by handset manufacturers, the platform is based on a Linux
kernel and developed as an open-source project led by Google.
Android supports user-installed software, which is executed
inside a sandbox that enforces strict isolation between
applications. Most users download apps from the platform’s
official Google Play app store, although the platform (through
a user setting) allows installing applications from arbitrary
sources. This possibility has led to the emergence of third-
party app stores.

2.1.1. Android Platform Security Model. In 2018, key
security architects in the Android team published the Android
Platform Security Model [8], which formalizes the core
principles of Android’s security architecture. The platform
uses a multi-party consent model, where operations that affect
apps must be agreed upon by the end user, the operating
system (OS), and the application developer (through policies
expressed in the app code). This consent model spans the
traditional notion of subjects (e.g., users and processes)
accessing objects (e.g., files and network sockets). The party
that creates an object is implicitly granted control over it.
For example, the system automatically creates a private data
folder for every app. The user’s consent to this action is given
through triggering the app installation. The OS ensures that
no other application may access this folder without consent
from the three main parties.

1. CVE-2023-21387

2.1.2. Permission System. The only way for an app to utilize
re- sources shared with the rest of the system is through
well-defined APIs under tight control of the OS kernel and
system framework. For accessing most of these APIs, apps
need to obtain the corre- sponding permission from the OS.
Any permission an app may request at runtime needs to be
statically declared to the OS in the app’s application manifest
(see Section 2.2). While the user implicitly grants an app’s
declared permissions during installation, some particularly
dangerous permissions require explicit user consent during
runtime. The permissions known to the Android OS are
grouped into different protection levels. Only a subset of
these levels is accessible to user-installed applications.

2.1.3. Privileged Applications. The Android security archi-
tecture assumes some applications preinstalled on the device
are more trustworthy than user-installed applications. They,
therefore, are allowed to request more privileged permissions
belonging to the privileged protection level. We refer to
these applications as privileged applications in the following.
Crucially, even if these apps hold a privileged position on
the device, they may not access any other (less-privileged)
app’s process space, influence its execution, or access its
private data directory.

2.2. Android Package Format

Android applications run in the Android-specific ART
Java runtime, which requires code to be compiled to the
special Dalvik bytecode format. Performance-critical func-
tionality can be provided as native machine code in ELF
shared object files. Applications need to be packaged into
an Android Application Package (APK) file before they may
be installed on a device. These files are signed ZIP archives
whose contents follow a specific structure. The main elements
are:

• DEX Files: Dalvik Executable files that contain man-
aged code, i.e. the Dalvik bytecode encoding the
app’s functionality. Any file named classes.dex
or classes{n}.dex (for any n > 1) in the APK
root is loaded into the app’s classpath.

• Shared Libraries: ELF binaries that contain native
code usually compiled from C or C++. Since they
contain machine code, they require adaptation to every
Instruction Set Architecture (ISA). Native libraries
typically reside in the libs folder in the APK, from
where they must be loaded via managed code.

• Resources: UI layout definitions, strings for localiza-
tions, and more that are compressed during compi-
lation are stored in the res folder and indexed in
resources.arsc in the APK’s root. Resources carry
a configuration qualifier, such as a language, screen
density, or OS version. It is, e.g., possible to mark an
image as high-dpi, so the Android framework loads it
only on devices with a high pixel density.

• Assets: Arbitrary files that are not modified during
compilation. These are stored in the assets folder in
the APK.

Android Package

Im
ag

es

Code aarch64 armeabi

x86 MIPS

String R
esources

ldpi mdpi

hdpi xhdpi

Assets

Android Package

N
ative Libs

Im
ag

es

aarch64 armeabi

x86 MIPS

String R
esources

ldpi mdpi

hdpi xhdpi

App
Store

Developer End User

APK Distribution Scheme

AAB Distribution Scheme

Android Application Bundle
N

ative Libs

Im
ag

es

aarch64 armeabi

x86 MIPS

String R
esources

ldpi mdpi

hdpi xhdpi

Android Package

Code Assets

aarch64 hdpi

Configuration Splits

App
Store

Manifest

Code

AssetsManifest

Code

AssetsManifest
Manifest

N
ative Libs

Developer End User

APK Signature Code Transparency

Key exclusively held by developer

Figure 1: Comparison between old APK and new AAB
distribution schemes. Unused resources and native libraries
wasted storage space in the old APK distribution scheme.
In the new AAB scheme, the app store serves optimized
APKs for every device configuration. Note how the optional
Code Transparency covers DEX files and native libraries,
while the APK signature covers the entire APK file. APKs
generated from AAB files are signed by the app store, which
is now in possession of the app signing key. Only the Code
Transparency key is exclusively held by the app developer.

• Application Manifest: AndroidManifest.xml in
the APK root effectively serves as the contract between
the app and the OS. It declares the app components (e.g.,
UI activities, broadcast receivers, content providers, etc)
that are exposed to the rest of the system, as well as
the system functionality (e.g., permissions) that the app
wishes to use.

2.3. Universal APKs, Multi APKs, Split APKs

APK files that contain resources and native libraries for
a variety of device configurations are called Universal APKs.
Alternatively, developers may produce multiple APK builds
of their app targeting different device configurations, called
Multi APKs. Android devices (running Android 5.0 or newer)
allow a single app to be installed from a collection of APK
files, called Split APKs.

2.4. APK Signature

Before an APK file can be installed on an Android device,
it needs to be signed. The signature covers all contents of the
APK file and is only checked during installation. It serves as
an integrity guarantee for an APK’s delivery (no tampering
between its creation and installation) and an app’s installation
(updates must come from the original app author). Since
APK signing certificates are usually self-signed, the APK
signature does not provide any means for authenticating
the developer of an app. By ensuring that app updates are
signed with the same certificate as the original installation,
the signature protects the app’s private data.

For the first decade of the Android OS’s existence,
developers typically were responsible for packaging and
signing APK files for their apps. They then submitted the
signed APK files to app stores, which would relay them to
end users. Since they would retain exclusive control over the
APK signing key, developers could use hardware-assisted
app attestation [10] at runtime to ascertain that the executed
APK file had not been manipulated.

3. Android Application Bundles and Code
Transparency

With the Android Application Bundle (AAB) format,
Google introduced a distinction between the publishing
and delivery formats of Android applications. While the
Android OS still only accepts app installations from APK
files, developers now submit their apps to distributors (such
as app stores) in the new AAB format. The distributor then
generates APK files optimized for end-user devices from the
submitted AAB file. The difference between the old APK
and the new AAB distribution scheme is illustrated in Figure
1.

3.1. AAB File Structure

Like the APK file format, AAB is based on ZIP archives.
However, an AAB file retains more of the high-level structure
from the app project, facilitating the generation of optimized
APK files later on. More specifically, data inside an AAB
file is organized in modules. Every app is required to have
a base module shipped with every installation. Further app
functionality may be clustered into additional modules that
can be installed on demand later. Every module inside the
AAB is organized in its own top-level folder. Each module
folder contains a file structure that is very similar to that
inside an APK file. A noteworthy difference is that all DEX
files that are to be copied into the root folder of generated
APK files are stored in a subfolder named dex inside each
module folder.

3.2. Bundletool

Google made all tooling required for building and pro-
cessing AAB files available under an open-source license in

the bundletool project2 to facilitate adoption by third-party
app stores. bundletool is used by Google Play and third-
party app stores, as well as by the Android Gradle Plugin
that compiles app projects in the official Android Studio
IDE [11]. Additionally, it may be invoked directly through a
command-line interface. The tool provides functionality for
creating AAB files from a set of individual app modules or
for generating a set of optimized APK files from an AAB
file.

3.3. APK Generation

When building APKs from an AAB file, bundletool will
generate a set of Split APKs. These include a base APK for
the base module and several configuration splits containing
different variants of resources and native libraries. Finally,
Split APK files will also be generated for any feature modules
and their configuration splits. The possible dimensions for
generating configuration splits are language, screen density,
and processor Application Binary Interface (ABI)3. For exam-
ple, for a complete installation of an app, it may be necessary
to install the base split, a configuration split for high-density
screens, one for the English language, and another for native
libraries in the arm64-v8a ABI. Typically, app stores
automatically download all Split APK files suitable for the
user’s device configuration. At the developer’s discretion,
feature modules may either be distributed as add-ons the
base module dynamically downloads on demand or already
as part of the initial installation.

The AAB format was designed to also support legacy
devices incompatible with Split APKs. For apps targeting
OS versions prior to Android 5.0, bundletool therefore also
generates Multi APKs for all possible combinations of APK
splits.

3.4. Code Transparency

This work refers to Google’s definition of Code Trans-
parency (CT): ”CT is an optional code signing and ver-
ification mechanism for apps published with the Android
App Bundle” [12]. This mechanism is only implemented in
external tooling. There is no infrastructure in the Android
OS itself for verifying the CT of APK files.

A developer can add CT to an application through
bundletool’s command line interface or through its Android
Gradle Plugin integration. This process injects a JSON
Web Token (JWT) file into the app’s AAB. This JWT file

”contains a list of DEX files and native libraries included
in the bundle, and their hashes” [12]. Listing 1 shows an
example of the content of a CT JWT file. The list in the JWT
file is signed with the developer’s private CT key, which
they are supposed never to share with another party. The
CT JWT file is copied into all APK files generated from the
AAB.

2. bundletool. https://github.com/google/bundletool
3. The ABI here roughly corresponds to a processor ISA.

{
"codeRelatedFile": [
{
"path": "base/dex/classes.dex",
"type": "DEX",
"sha256": "7b22...d19e"

},
{
"path":

"base/lib/arm64-v8a/libjsc.so",↪→

"type": "NATIVE_LIBRARY",
"apkPath":

"lib/arm64-v8a/libjsc.so",↪→

"sha256": "b63e....7a49"
},

],
"version": 1

}

Listing 1: The signed content of a Code Transparency JWT

CT was designed to be verifiable by both developers and
end users. Bundletool provides functionality for checking
whether the JWT in an APK contains a valid hash for all the
app’s DEX or SO files. End users also need to verify that the
key used for signing the JWT is the legitimate developer’s
CT key. This requires an additional secure channel between
the developer and user to communicate the legitimate key.

3.5. Code Transparency Attack Scenarios

Android CT is intended to thwart supply-chain attacks
that happen in the app distribution channel between an app’s
developer and an end user. As stated by Google, verifying the
CT gives the developer ”assurance that, even if the APK itself
was re-signed during distribution, the code verified by CT
hasn’t been modified” [13]. CT verification is used ”for the
purpose of inspection by developers and end users, who want
to ensure that code they’re running matches the code that
was originally built and signed by the app developer” [12].
Since Google has not provided a definition for the addressed
supply-chain scenarios in the documentation for CT, we refer
to Google’s Android Binary Transparency scheme [14]. It is
the equivalent of CT for protecting firmware images against
supply-chain attacks. There, Google states that ”software
supply chains are increasingly vulnerable to attacks, ranging
from compromised signing keys to surreptitious code injection
to insider attack” [14]. In fact, similar events have happened
in the past. For example, platform signing keys from Android
vendors were found to have been leaked in 2022, enabling
attackers to install apps with system privileges on affected
devices4. There have also been examples in the past of CA
key compromises [15], which play a similarly important role

4. Issue 100: Platform certificates used to sign malware. https://bugs.
chromium.org/p/apvi/issues/detail?id=100

in the Internet’s Public Key Infrastructure as app signing
keys do on Android. As evident from the existence of CT
for AAB, Google considers these realistic scenarios in app
distribution as well.

4. CT Attacker Models

This section discusses the attacker goals and models we
use in our analyses. All attacker models are based on the
assumption that an attacker exploits an app store’s access
to APK signing keys (as necessary for AAB) to produce
and distribute malicious APKs that bear the legitimate
signing certificate. On paper, Code Transparency promises
the possibility to detect such attacks.

4.1. Attacker Goals

In the subsequent analyses in Section 5, we consider a
scenario in which a malicious party aims to compromise a
concrete app installation, i.e., aims to deliver a manipulated
target application to a specific victim user. Moreover, we
assume that the attacker wishes to operate stealthily, i.e., by
only temporarily deploying the manipulated app as an update
to a legitimate installation and later rolling back all changes.
It is worth noting that compromising an APK that bears
the legitimate APK signature is particularly desirable for
an attacker. APKs modified in this way cannot be detected
through app attestation and can be installed as updates to
a legitimate install, thereby gaining access to all its private
data.

In line with the Android Platform Security Model [8], we
assume the attacker wants to compromise the main assets of
an application: First, by gaining control over an application’s
execution flow (i.e., gaining code execution), the attacker
can perform arbitrary actions from the target application’s
context. Second, by gaining control over a target application’s
private data directory, the attacker can extract sensitive data,
e.g., credentials that they may misuse for user impersonation.

To summarize, we identify these two attacker goals that
CT’s integrity guarantees should prevent:

• G1: Code injection. Any attempt of an attacker to
manipulate an APK for changing its runtime behavior
should lead to the APK failing CT verification.

• G2: Data access. Any attempt of an attacker to ma-
nipulate an APK for gaining access to the application’s
private data directory should lead to the APK failing
CT verification.

Please note that our analyses assume apps are installed
and executed on an Android system that passes the Android
Compatibility Test Suite, i.e., that runs a fully patched (as of
August 2023) untampered (unrooted) specification-compliant
OS.

4.2. Attacker Models

All attacker models we consider in our analyses assume
an attacker holds some position in the app supply chain

https://bugs.chromium.org/p/apvi/issues/detail?id=100
https://bugs.chromium.org/p/apvi/issues/detail?id=100

between the developer and the end user. Through this position,
the attacker gets access to the APK signing key for producing
APK files that can be installed as an update to an original
legitimate APK. We assume that developers are aware of the
possibility for app manipulations in the supply chain when
using the AAB format and precautionarily employ CT as a
means to detect these manipulations. We further distinguish
the attacker models in the degree of access the attacker
has to the victim’s device. Two attacker models assume
an attacker who has compromised an app store operator’s
infrastructure (e.g., as an inside attacker). The last attacker
model considers scenarios in which only the APK signing
keys are compromised. The existence of CT shows that
Google considers these scenarios to be realistic.

• M1: Privileged app store. In addition to being in
possession of the APK signing key, the attacker can
execute code from a privileged application installed
on a target device. It is crucial to note that without
modifying the target APK, even a privileged application
is subject to the access policies described in the Android
Platform Security Model [8]. In particular, it does not
have any means to execute code in the context of another
application or access its private data folder. Virtually
all Android vendors operate their own privileged app
stores, which, if compromised, allow an attacker to act
under this model. Examples would be the Google Play
Store on most Android devices, or Huawei App Gallery
on devices produced by Huawei.

• M2: Unprivileged app store. The attacker may exe-
cute code in an unprivileged (user-installed) app store
application on the victim device. A multitude of third-
party app stores are available for Android, which, if
compromised, can be exploited to the effect of this
attacker model.

• M3: Other role in the supply chain. The attacker
does not have any means to execute code on the victim
device other than through injecting it into the target
application.

5. Security Analysis of CT

In this section, we discuss the security flaws we identify
in CT for AAB from analysing the official documentation
and the source code of both bundletool and the Android
Open Source Project. We distinguish between flaws inherent
to the CT design and those that only affect the bundletool
reference implementation.

5.1. Design Flaws in CT

Based on the security goals of CT we establish in Section
4, we identify the following flaws in its design.

F1: Optionality. Although intended to mitigate the severe
security repercussions of the AAB distribution scheme, CT is
only an optional feature. In fact, developers may only learn
about its existence through subpages hidden in the Android

documentation. While hampering the broad adoption of CT,
its optionality also has serious consequences for the scheme’s
security. It means that users cannot know whether an APK
lacking CT was submitted like this by the developer or
subjected to its malicious removal somewhere along the
supply chain.

F2: Scope. CT lacks coverage of key possibilities for manip-
ulating an app’s behavior. More specifically, the application’s
manifest is not covered, nor are its assets or resources. Since
applications are free to include executable code in formats
of their choosing at arbitrary locations in their APKs, this
leaves severe gaps in the integrity guarantees of CT.

F3: Communication Channel. The CT design leaves a key
question unanswered. The official documentation notes that
the ”public [CT] key of the developer [...] must be provided
by the developer over a separate, secure channel” [12]. While
the general problem is not specific to CT but associated to
public key distribution in general, the CT does not provide
any clues as to how such a separate secure channel to the
user may be established, given that all information published
by the distributor must not be trusted.

5.2. Implementation Flaws in bundletool

In addition to the design flaws described above, we
also identify several implementation flaws in the bundletool
reference implementation of CT for AAB.

F4: Certificate Reuse. In the documentation for CT, Google
states that the CT key ”should be a unique key that is different
from the app signing key” [12]. In fact, this is an essential
requirement for the integrity guarantees the scheme aims to
provide. Given that the app signing key must be shared with
the app distributor, the latter may otherwise regenerate the
CT after manipulating SO or DEX files. However, bundletool
does not enforce this crucial requirement. The tool accepts
the same key being used for both adding CT to an AAB
and for generating APK files from the AAB. The APK files
produced in this way also pass all checks when verifying
their CT through bundletool.

F5: DEX or SO in Assets. When an application includes
DEX or SO files in its assets or other non-standard locations,
verifying its CT fails even if the APK file has not been
manipulated. This is due to an asymmetry between the
implementations of CT generation and verification. While
CT generation only considers DEX files in the root of the
APK and SO files in the lib folder, verification ensures
that all such files at any location in the APK have a valid
entry in the JWT file.

As a result of this implementation flaw, developers
of affected applications can not take advantage of CT to
detect manipulations of their APKs. We note that, e.g., the
Facebook Audience Network SDK5, the most popular third-
party advertisement library for Android [16], ships with a

5. Audience Network SDK. https://developers.facebook.com/docs/
audience-network

https://developers.facebook.com/docs/audience-network
https://developers.facebook.com/docs/audience-network

DEX file in its assets folder. As a result, about 13% of all
apps on Google Play are affected by this problem [17].

F6: App Archives. By default, when generating APK files
from an AAB, bundletool also generates an app archive
APK. This is a lightweight placeholder APK sharing the
app’s package name and app signing key. It may be installed
in place of the app’s full APK to save storage space while
retaining its private data directory. The placeholder APK
contains code and resources necessary to redownload the
full APK when needed.

The addition of app archiving to bundletool in 2022 and
Google’s integration of the feature in Google Play marked
the first time an app store used the power gained through the
AAB scheme to actively change app functionality. Given that
app archiving is retroactively added during APK generation,
the code for redownloading the full APK is not intuitively
part of the CT. Indeed, when app archiving was added to
bundletool in March 2022 (version 1.8.2), placeholder APKs
did not contain any CT, even if the AAB did.

This issue was solved in October 2022 (bundletool 1.12.0)
by adding the hash of the placeholder APK’s DEX file to
every CT generated. The DEX file can, therefore, be later
injected into generated APKs without tripping CT checks.
Thus, with every CT generation, developers unknowingly
agree a third-party DEX file to be executed in the context of
their application. Even worse, Google does not disclose the
source code of that DEX file. We conclude that app archiving
effectively bypasses CT’s integrity guarantees intended to
protect against APK manipulations by app distributors.

6. Attacks Against CT

The attacks presented in this section take advantage
of the CT flaws we discussed in previous Section 5. We
experimentally confirmed all attacks on a Google Pixel 6a
running Android 13.0. For simulating an M1 attacker, we
built Magisk6 modules that installed our proofs of concept
as privileged applications. An overview of the attacks, their
exploited flaws, respective attacker model and goals may be
found in Table 1.

A1: Code Execution by Stripping CT. Given the optionality
of the feature, an attacker under any of our models may
simply remove the CT of an AAB when generating a
manipulated APK file for a victim user. Since no trace of CT
is left in the generated APK file, the victim may only detect
the manipulation if they have a separate secure channel to
the developer. To summarize, a stripping attack works by:

1) Removing the CT JWT from the AAB submitted by
the developer.

2) Replacing or adding DEX or SO files in the AAB.
3) Generating and serving APKs from the manipulated

AAB.

6. Magisk: The Magic Mask for Android. https://github.com/topjohnwu/
Magisk

A2: Code Execution through Library Injection. CT by
design covers only executable parts of an application. It
does not protect the integrity of the application manifest,
which means that any changes an attacker applies to this
file go unnoticed. This enables an M1 or M2 attacker
to inject code into any app’s classpath and enforce this
payload’s execution during app launch. More specifically,
injecting code may be accomplished through the undocu-
mented uses-static-library manifest entry. During
app launch, the system parses this entry and loads all DEX
files of the referenced packages into the app’s classpath.
There are no restrictions on referenced packages other
than that they must be installed on the device and that
their signing certificate must be known to the dependent
application. The application manifest also offers multiple
options for an attacker to enforce the invocation of the
injected code. The most straightforward approach is adding
a ContentProvider element that references a class in
the injected code. When launching an application, the system
automatically invokes the onCreate() method of any
ContentProviders it exposes. From there, the attacker
may then, e.g., inspect files stored in the app’s private data
folder or manipulate the internal data structures of the ART
runtime to alter further app functionality. To exploit this
vulnerability, an attacker may follow these steps:

1) Under attacker model M1, the
attacker uses the privileged
android.permission.INSTALL_PACKAGES
permission to install an additional package containing
the malicious code. Under attacker model M2, the
attacker includes the malicious code in the app store
app already installed on the device.

2) The attacker injects the uses-static-library
entry referencing the malicious code package and a
ContentProvider into the manifest of the target
application. Alternatively, the referenced library may
simply contain a class named identical to one of the
target application’s app components.

3) When launched on the victim device, the attacker’s
malicious code is executed in the context of the target
application.

A3: Code Execution through Debuggable Flag. Modifying
its manifest also allows an attacker to mark an application as
debuggable without influencing its CT. The debuggable
manifest flag is usually only set on applications during
development. It weakens some of the app isolation security
features in the OS to facilitate inspecting the app’s runtime
behavior. Most notably, the ART runtime opens a Java
Debug Wire Protocol (JDWP) debug port for applications
carrying this flag. An app developer may then connect
the Java Debugger (JDB) to the application through the
Android Debug Bridge (ADB). The ADB stack involves
a server running on the Android device while the system-
wide debug setting is active. ADB clients may connect to
this server through USB or TCP/IP. In accordance with the
Android Platform Security Model [8], initial connections
need explicit consent by the user. For wireless connections,

https://github.com/topjohnwu/Magisk
https://github.com/topjohnwu/Magisk

Attack Flaw
Attacker

Goal
Attacker
Models

App
Conditions

Android
Versions

A1: Stripping CT F1 G1 M1, M2, M3 None All
A2: Library Injection F2 G1 M1, M2 None 8.0+
A3: Debuggable Flag F2 G1 M1 None All
A4: Resources / Assets F2 G1 M1, M2, M3 Relevant files All
A5: Backup Opt-In F2 G2 M1 None 4.0 - 13a

a. The vulnerability was fixed in Android 14 after our responsible disclosure

TABLE 1: Summary of the attacks we identified against CT.

this involves supplying the client with a numeric code
generated and displayed by the ADB server on the device.
Subsequent connections utilize exchanged asymmetric keys
for authentication.

Although ADB is intended for connecting to the
Android device from an external computer, connec-
tions from a local process are possible as well. We
also found that a privileged application carrying the
android.permission.MANAGE_DEBUGGING permis-
sion may bypass the user consent requirement described
above. These possibilities allow an attacker under model
M1 to gain code execution in any app while the device is
connected to a Wifi network by carrying out the following
procedure:

1) The attacker sets the debuggable flag in the manifest
of the target application delivered to a victim user.

2) The attacker uses the privileged
android.permission.MANAGE_DEBUGGING
permission to enable wireless debugging for the
currently connected Wifi SSID. This works by invoking
the allowWirelessDebugging() and
enabledPairingByPairingCode() methods
on the AdbManager system service.

3) The attacker may listen for the
WIRELESS_DEBUG_PAIRING_RESULT_ACTION
broadcast to learn the server port and pairing code that
the user normally needs to manually enter into the
ADB client.

4) The attacker establishes an ADB connection to localhost,
authenticating using the intercepted pairing code.

5) The attacker can now manipulate the target application’s
execution by establishing a JDB connection via ADB.

A4: Code Execution through Resources or Assets. While
CT intends to cover executable parts of an application, it is
entirely ignorant of the fact that many applications contain
executable code in non-standard forms or locations. CT
only covers SO and DEX files in their default locations.
However, applications may load DEX files or native code
from any location within their APK. Additionally, developers
commonly take advantage of cross-platform app frameworks
such as React Native, Xamarin, Cordova, or Ionic. Many
of these frameworks ship the app’s functionality in code
formats other than DEX or SO. An attacker under any of
our models may trivially compromise an affected application
by manipulating these custom code formats.

A5: Data Access through Backup Opt-in. System backups
on Android usually need to be explicitly started by the user,
either through the UI or ADB. Once manually initiated,
the system takes a copy of the private data directory of all
applications that do not opt out through the allowBackup
manifest entry.

We identified a vulnerability in the Android OS that
allowed privileged applications to bypass user confirma-
tion for backups. Confirmation is implemented by hav-
ing the BackupManager system service generate a ran-
dom token that is passed to system UI. The backup
process is started only if this token is reported back
to the BackupManager service. Unfortunately, while
the token was transported to system UI through an ade-
quately secured channel, it was also leaked to the system’s
Logcat log. Since privileged applications may obtain the
android.permission.READ_LOGS permission to gain
access to these log messages, they were able to bypass the
user’s consent for backups. We responsibly disclosed this
vulnerability to Google. A fix was implemented and is being
deployed to end-user devices in the Android 14 release. For
unpatched devices, an M1 attacker may:

1) Remove the allowBackup flag from the manifest of
the target application delivered to a victim user.

2) Use the privileged android.permission.BACKUP
permission for invoking adbBackup() on the
BackupManager system service.

3) Use the privileged android.permission.READ_
LOGS permission to extract the leaked user confirmation
token.

4) Spoof user confirmation to the BackupManager by
passing the token to acknowledgeFullBackup().

5) Extract the contents of the target application’s private
data directory from the backup.

7. AAB and CT In Practice

In this section, we evaluate the prevalence and security of
CT in real-world applications. We concentrate our analyses
on Google Play and Huawei AppGallery. Google Play is the
official app store on the Android platform and, therefore,
largest in terms of offered apps and active users. Huawei
AppGallery was the first third-party Android app store to
add support for AAB (in 2020) [18].

7.1. Prevalence of AAB and CT

For determining the prevalence of real-world applications
using the AAB distribution format and CT, we carried
out large-scale automated analyses on 3.3 million free
applications from Google Play and 230k free apps from
Huawei AppGallery. It is worth noting that neither platform
publishes an official index of available apps. Not even the
exact number of listed packages is publicly disclosed, so
we are unable to provide any information regarding the
completeness of our analysis.

The Google Play dataset was obtained from the
AndroZoo project [19] in April 2023 and filtered to only
include apps listed on Google Play at the time of our
analysis. We additionally retrieved metadata directly from
Google Play servers for the resulting 3 265 096 apps to
detect whether they had been submitted as an AAB file
(AndroZoo did not provide app metadata at the time
of our study). The dataset from Huawei AppGallery
consists of 226 568 free apps indexed through brute-
forcing application identifiers on Huawei AppGallery
in April 2024. Since no suitable information could be
identified in AppGallery’s app metadata, we interpreted
the presence of the file META-INF/BNDLTOOL.RSA
in served APKs as an indicator for original submissions
as AAB. Unmodified bundletool versions store the APK
signature at this location. However, since Huawei might
have used a modified bundletool binary for some of
the apps on AppGallery, we note that our results for
Huawei AppGallery only represent a lower bound. The
presence of CT in an app was assessed by scanning the
ZIP central directory in the APK for an entry named
META-INF/code_transparency_signed.jwt.
Since this is the only allowed location for the CT file as per
the scheme’s specification, this analysis is precise. Carrying
out the analyses took about 80 hours for Google Play and 5
hours for Huawei AppGallery.

7.1.1. Android Application Bundle Prevalence. Of the
3 265 096 applications analyzed from Google Play, 1 528 310
(46.8 %) had been submitted in the AAB format. The
remaining apps must have been enlisted on Google Play
before 2021 (even if they may since have been updated;
AAB is only mandatory for new apps in general, not
for updates). These numbers indicate an increase in AAB
adoption compared to official numbers published by Google
in 2021, when ”more than 1 million apps” [20] were reported
to have been submitted as AAB. Of the 226 568 analyzed
apps from Huawei AppGallery, only 97 (0.04 %) had been
submitted in the AAB format. We trace this low number
back to the fact that the format is entirely optional for this
app store. We note that all the apps that use AAB on any app
store are susceptible to the supply chain attacks discussed
in Section 6.

7.1.2. CT Prevalence. Only 21 (0.0014 %) of the applica-
tions submitted in the AAB format to Google Play contained
a CT JWT. A full list of them may be found in Appendix

A. Of these 21 applications, 11 are plugins for a geospatial
planning app, all listed under the same publisher account
on Google Play. 4 more applications were published by a
single company. Additionally, three apps are stock portfolio
management apps that are so similar in UI and functionality
that they likely originate from the same developer, even if
listed under different publishers on Google Play (all are
French banks; two belong to the same enterprise group).
We conclude that within the analyzed dataset, only four
developer teams were aware of AAB’s security implications
and the (limited) countermeasure that exists in CT. None of
the analyzed apps from Huawei AppGallery contained a CT
JWT. We assume that CT’s optionality (design flaw F1) and
implementation flaw F5 are major contributing factors to the
low adoption of CT on both app stores.

It is worth noting that due to capacity constraints, we
chose not to contact the developers of applications that lacked
CT JWTs. This would have required us to establish secure
channels (e.g., by finding contact information on developer
websites; the data published in app stores may not be trusted)
to the developers of almost all 3.5 million apps in our dataset.
It would have allowed us to learn whether their submitted
AABs had contained a JWT in the first place. We, therefore,
potentially missed stripping attacks (See Section 6) in our
analysis.

7.1.3. Verifying CT. We used bundletool to verify the
integrity of the 21 samples in our dataset that contained a CT
JWT. The tool confirmed that all JWTs contained matching
hash entries for the DEX and SO files in the corresponding
APKs. We also tried to ascertain that all CT JWTs were
signed using the legitimate public key of the respective
original developers. For the 11 plugin apps, the legitimate
public key could be found in the open-source variant of the
host app, which allowed us to completely verify these apps’
CT with reasonable certainty. For the 10 remaining apps, we
were unable to find trustworthy public information regarding
their legitimate public key. We, therefore, contacted the
support email addresses recorded in their respective Google
Play listings. We could confirm the authenticity for all but
one of the provided email addresses through the respective
company websites. However, we did not receive any response
to our emails within three months. Detailed results for this
analysis can be found in Appendix A.

7.1.4. Susceptibility to CT Attacks. All of the apps we
found to use CT are susceptible to attacks A1, A2, A3, and
A5. This simply follows from the fact that these attacks do
not impose any requirements on affected apps.

To also evaluate the susceptibility for app-dependent
attack A4 (Code Execution through Resources or Assets),
we built a simple static analysis tool. This tool scans for files
in an APK’s assets or resources that carry the file signature
or extension of the ELF, DEX, APK, or DLL formats.
Additionally, all files in these folders that contain only
printable characters are ran through the Esprima JavaScript
syntax validator.

A4
Package Name JS DLL

com.atakmap.android.bng.plugin
com.atakmap.android.compassnav.plugin
com.atakmap.android.datasync.plugin
com.atakmap.android.firesurvey.plugin
com.atakmap.android.geocam.plugin
com.atakmap.android.grgbuilder.plugin
com.atakmap.android.takchat.plugin
com.atakmap.android.uastool.plugin
com.atakmap.android.vns.plugin
com.atakmap.android.wave.plugin
com.microsoft.loop
com.neuflize.obc.bourse
com.oracle.ebs.maintenance
com.oracle.ebs.scm.mwa.MSCA10
com.oracle.ebsapps.csm
com.oracle.events
com.portzamparc.bourse
com.somewearlabs.swtak.plugin
net.bnpparibas.bourse

TABLE 2: Susceptibility to attack A4 of apps that use CT.
JS/DLL: Apps integrate JavaScript code or Dynamic Link
Library files.

Our analysis indicates that 8 of the 21 (38 %) applications
that use CT are susceptible to A4. 8 apps implement some
of their functionality in JavaScript, while 1 includes code in
a Dynamic Link Library (DLL). None of the apps contained
DEX, SO, or APK files in their resources or assets. The
exact findings for each application are listed in Table 2.

7.1.5. Eligibility for CT and Possible Attacks Among Pop-
ular Apps. We also ran our static analysis tool described in
Section 7.1.4 against a representative set of the most popular
applications from Google Play. Our goal was to determine
their eligibility for adopting CT and their susceptibility to
our attacks once they do so. The dataset was assembled
by collecting the package names of the 200 most popular
free applications of all 36 categories on Google Play in
December 2023. We again extracted the APKs for these
applications from the AndroZoo [19] project. Since some
apps were not in their collection, our final dataset consisted
of 6 648 applications.

Our tool indicates that 3 935 (59.2 %) of the analyzed
apps had been submitted to Google Play in the AAB format.
One (0.02 %) app (Microsoft Loop, which we also found
in Section 7.1.2) uses CT. 1 442 (21.7 %) of packages
in our dataset are not compatible with bundletool’s CT
implementation due to containing DEX or SO files in non-
standard locations (F5). In 1 243 (18.7 %) of the analyzed
apps, the integration of the Facebook Audience SDK at least
contributed to this incompatibility. If they adopted CT, 3 467
of the analysed apps (52.2 %) would be susceptible to attack
A4. All of them would be susceptible to attacks A1, A2, A3,
and A5.

$ bundletool check-transparency --mode=apk
--apk-zip=loop-patched-apks.zip↪→

APK signature is valid. SHA-256
fingerprint of the apk signing key
certificate (must be compared with
the developer's public key
manually): 94 29 4F 23 A8 ... 50 6B
CD B0 22 AB 1F D8 C9 3C

↪→

↪→

↪→

↪→

↪→

Code transparency signature is valid.
SHA-256 fingerprint of the code
transparency key certificate (must
be compared with the developer's
public key manually): 52 D4 B1 8E
CA 3F 78 62 FF ... 89 54 40 B7 C2
02

↪→

↪→

↪→

↪→

↪→

↪→

Code transparency verified: code
related file contents match the
code transparency file.

↪→

↪→

Listing 2: The manipulated APK still successfully passes the
CT verification in bundletool

7.2. Case Study

To demonstrate the practicality of the attacks described
in Section 6, we provide a case study on attacking CT in a
real-world application.

7.2.1. Microsoft Loop. The Android application
(com.microsoft.loop) for this collaborative creation
environment has been downloaded from Google Play by
more than 100 000 users as of December 2023. The app
employs CT, likely in an attempt to thwart the potential for
supply chain attacks enabled by the AAB format. However,
this attempt proves ineffective against manipulations of the
app’s runtime behavior. For this case study, we demonstrate
how attack A2 may be used to inject code for stealing login
data without invalidating the APK’s CT. We implemented
a custom stage for the A2P2 APK patching pipeline [21]
that injects a uses-static-library element into the
application manifest. We also created an additional package
exposing the referenced library to the system, which needs to
be installed on the victim device (see Section 6). The library
code defines a class named identical to the Microsoft Loop
application’s main UI activity. Since static libraries take
precedence over app code in Android’s class loading, this is
enough to intercept the app’s launch. Our malicious main
activity displays a fake login screen that, in a real-world
attack, could, for example, forward all collected credentials
to a web server controlled by the attacker. Despite the ability
for the attacker to execute arbitrary code in the context of
the Microsoft Loop application, its CT remains valid, as can
be confirmed through the bundletool output in Listing 2.

Please note that we do not have access to the private
key for the APK’s app signing certificate, so we cannot
entirely accurately simulate a supply chain attacker. In a real-
world attack, the manipulated APK would be signed with the

developer’s correct app signing certificate. As explained in
Section 3, the AAB scheme requires the developer to share
the app signing key with the distributor.

8. Discussion & Future Work

8.1. Improving AAB and CT

Given the number of serious design flaws in CT (see
Section 5), we consider a complete secure design out of
scope for this work. However, we would like to suggest
improvements that mitigate the design problems raised in
Section 5. We discuss fixes for the implementation flaws in
bundletool in Appendix B.

F1: Optionality. The simplest solution for this issue
is making CT a mandatory part of the AAB format. This
would enable trivial detection of stripping attacks. If for
some reason (e.g. backward-compatibility), such a change
cannot be realized, we note that the information obtainable to
the user through the separate secure channel to the developer
(as discussed in the CT documentation [12]) at least needs
to include an indication whether the AAB contained a CT
when submitted.

F2: Scope. The attacks described in Section 6 highlight
the necessity for CT to cover the application manifest, assets,
and resources. However, it is unclear how such a solution
may be implemented, given that bundletool itself modifies
these parts of the application during APK generation.

F3: Communication Channel. We argue the need for
a standardized registry for legitimate public CT keys. A
solution might be akin to Certificate Transparency for TLS
certificates [22].

Practicality. Currently, verifying an application’s CT
requires a deep understanding of the Android OS and develop-
ment tools. It is, therefore, only accessible to advanced users.
Future work needs to identify possibilities for improving the
user experience of CT verification.

8.2. Preventing infrastructure-level attacks

Given the complexity of app stores, it is unlikely that
the possibility for attacks compromising app store infras-
tructure (attacker models M1 and M2) can ever be entirely
eliminated. For vendors whose devices go through Google’s
GMS certification, further security could be imposed by
requiring security audits of privileged app stores as part of
the certification process. However, since Android consciously
allows third-party app stores with no ties to Google nor
device vendors, attacker model M2 will always remain well
within the boundaries of possibility.

8.3. Server-Side APK Generation

The fundamental proposition of the AAB publishing
format is the possibility for distributors such as app stores to
generate APK files optimized for end-users’ devices. While
optimized APKs undoubtedly improve the user experience,

we argue that the AAB format is not necessary for serving
optimized APKs to end users.

First and foremost, generating APKs on the server would
be necessary if the number of possible device configurations
to optimize for was unknown at compile time. However,
these optimized builds are simply composed of all possible
combinations of resource variants already provided by the
app developer. Therefore, the optimized APKs could already
be packaged during app build by the developer. In fact,
functionality for generating a container of all possible
optimized APKs is already available in bundletool.

Server-side APK generation only possibly offers advan-
tages when new features are to be globally retrofitted into
already submitted apps. However, the crude workaround
implemented for App Archives (see F6) displays that any
such efforts drastically interfere with the developer’s interest
in provable integrity guarantees for their app’s behavior.

Given the lack of apparent advantages of server-side
APK generation and its negative security repercussions, we
argue that app stores should at least offer the option for
developers to submit a container of locally built optimized
APKs for their apps. This would allow them to sign the
APKs themselves without having to hand over the APK
signing key. As a result, they could benefit from the strong
integrity guarantees of the APK format and app attestation.

Security Impact. Due to the small number of apps
that use CT, the practical security impact of the identified
flaws in CT alone is relatively small. However, the security
impact of our work becomes apparent when considering the
bigger picture: Given the security consequences of AAB
(without CT), the low prevalence of CT means that a very
large number of apps are vulnerable to supply chain attacks.
Even worse, due to the current state of CT as discussed in
this paper, no effective mitigations for the severe security
repercussions of the AAB distribution scheme are available.

9. Related Work

Despite their impact on the security architecture of the
Android ecosystem, to the best of our knowledge, our work
represents the first scientific publication concerned with
Code Transparency and the Android Application Bundle
distribution scheme. However, research has been ongoing in
the related domains of Android Supply Chain Attacks, App
Integrity Checking, and App Misconfiguration. This section
provides an overview of these fields.

Android Supply Chain Attacks. To the best of our
knowledge, no other studies exist on the security of the
global application supply chain from the developer to the end
user on Android. However, several recent publications deal
with various aspects of the software supply chain upstream
of the developer, i.e., third-party app components and tools.
The work that is most similar to ours in this category is the
one by Wang et al. [23], which discusses the possibilities
for malicious third-party libraries to stealthily override an
application’s security policies. A number of further studies
elaborate on the perils of malicious app components in a
benign app, such as Wang et al. [24], Kim et al. [25] and

Zhang et al. [26]. Several research teams, including Wu et
al. [27], Zhan et al. [28], and Backes et al. [16] investigated
the prevalence of vulnerable third-party libraries integrated
into applications.

App Integrity Checking. Since the introduction of the
Android OS, repackaging attacks have been a major focus
of research attention. These attacks exploit the fact that
APK signing does not provide any authenticity guarantees,
allowing anyone to redistribute a manipulated version of
a legitimate application. Research in this field has mostly
focused on either detecting repackaging attacks or repackage-
proofing applications. Works on repackage detection propose
approaches based on watermarking [29] or similarities in
app resources [30] or code [31]. These approaches scale
poorly since they need to compare each sample to a large
database of applications. Shi et al. [32] present a solution
that does not work through comparison, but only works for
repackaging attacks that use virtualization techniques. Sug-
gestions for repackage-proofing include Stochastic Stealthy
Networks (SSN) [33] that spread obfuscated signature checks
throughout app code, logic bombs [34] that only trigger
when executed on end-user devices or a combination of
native and self-decrypting code [35]. However, as recently
shown by Ma et al. [36], none of these countermeasures
are insurmountable by reasonably determined attackers due
to being confined to the same sandbox as the malicious
code. An effective mitigation for repackaging attacks in
server-client scenarios can be found in hardware-assisted
app attestation, as discussed by Prünster et al. [10]. Several
publications recently investigated the security of hardware
attestation implementations. As part of these efforts, Aldoseri
et al. [37] and Shakevsky et al. [38] identified severe flaws
affecting millions of devices. Complementarily, Ibrahim et al.
[39] and Berlato et al. [40] studied the integration of these
technologies into real-world applications and discovered they
were used by only 0.04 % of analyzed applications. All
these protection methods are ineffective against the attacks
discussed in our paper because they rely on the app developer
having exclusive control over the APK signing key. However,
AAB distribution requires the developer to share the APK
signing key with the app distributor.

App Misconfigurations. Many of our attacks against
CT exploit the powerful role of configuration files in Android
apps. Several recent works investigated how mistakes in
these configurations can introduce exploitable vulnerabilities.
Yang et al. [41] and Jha et al. [42] constructed tools
for automatically detecting manifest misconfigurations in
compiled apps and found severe security flaws in widely used
software. Oltrogge et al. [43] examined the Network Security
Configuration in 1.3 million apps and uncovered that it was
used for bypassing the default security policy in the over-
whelming majority of cases. Lastly, Lenk et al. [44] analyzed
the security implications of real-world ContentProvider
configurations, reporting sensitive data leakage in a consid-
erable number of apps.

10. Conclusion

In this paper, we presented the first comprehensive
security analysis of Code Transparency (CT) for Android
Application Bundles. We identified 3 design flaws and 3
implementation flaws in CT and its bundletool reference
implementation. These flaws may be exploited through 7
different attacks for bypassing CT to gain code execution or
data access in applications.

We further provided detailed statistics regarding CT in
practice. We found that CT is almost non-existent in real-
world applications despite the severe security consequences
of the AAB format. We were also able to show that more
than 20 % of the most popular applications on Google Play
are not even able to use CT due to implementation flaws in
bundletool. For apps that use CT, we provided a case study
illustrating the consequences of the attacks we identified.
Finally, we discussed possibilities for improvements to CT
and AAB.

References

[1] I. Malchev, “Here comes treble: A modular base for android,” online,
May 2017. [Online]. Available: https://android-developers.googleblog.
com/2017/05/here-comes-treble-modular-base-for.html

[2] A. Ghuloum, “Fresher os with projects treble and mainline,” online,
May 2019. [Online]. Available: https://android-developers.googleblog.
com/2019/05/fresher-os-with-projects-treble-and-mainline.html

[3] K. N. Chris Sells, Benjamin Poiesz, “Use android jetpack
to accelerate your app development,” online, May 2018.
[Online]. Available: https://android-developers.googleblog.com/2018/
05/use-android-jetpack-to-accelerate-your.html

[4] T. Lim, “I/o 2018: Everything new in the google play console,” online,
May 2018. [Online]. Available: https://android-developers.googleblog.
com/2018/05/io-2018-everything-new-in-google-play.html

[5] Google, “Android developers: About android app bundles,” online,
Nov. 2023, accessed 2023-12-05. [Online]. Available: https:
//developer.android.com/guide/app-bundle

[6] D. Elliott and Y. Becher, “Recent android app bundle improvements
and timeline for new apps on google play,” online, Aug. 2020.
[Online]. Available: https://android-developers.googleblog.com/2020/
08/recent-android-app-bundle-improvements.html

[7] J. Wentz, “App bundles for google tv and android tv,” online, Nov.
2022. [Online]. Available: https://android-developers.googleblog.com/
2022/11/app-bundles-for-google-tv-and-android-tv.html

[8] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, “The
android platform security model,” ACM Trans. Priv. Secur., vol. 24,
no. 3, 2021.

[9] M. Murphy, “Uncomfortable questions about app signing,” online,
Sep. 2020. [Online]. Available: https://commonsware.com/blog/2020/
09/23/uncomfortable-questions-app-signing.html

[10] B. Prünster, G. Palfinger, and C. Kollmann, “Fides: Unleashing the
full potential of remote attestation,” in Proceedings of the 16th
International Joint Conference on e-Business and Telecommunications
ICETE, 2019.

[11] Google, “Android developers: bundletool,” online, Jul. 2023, accessed
2023-12-05. [Online]. Available: https://developer.android.com/tools/
bundletool

[12] ——, “Android developers: Code transparency for app bundles,”
online, Jul. 2021, accessed 2023-12-05. [Online]. Available:
https://developer.android.com/guide/app-bundle/code-transparency

https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html
https://android-developers.googleblog.com/2018/05/use-android-jetpack-to-accelerate-your.html
https://android-developers.googleblog.com/2018/05/use-android-jetpack-to-accelerate-your.html
https://android-developers.googleblog.com/2018/05/io-2018-everything-new-in-google-play.html
https://android-developers.googleblog.com/2018/05/io-2018-everything-new-in-google-play.html
https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle
https://android-developers.googleblog.com/2020/08/recent-android-app-bundle-improvements.html
https://android-developers.googleblog.com/2020/08/recent-android-app-bundle-improvements.html
https://android-developers.googleblog.com/2022/11/app-bundles-for-google-tv-and-android-tv.html
https://android-developers.googleblog.com/2022/11/app-bundles-for-google-tv-and-android-tv.html
https://commonsware.com/blog/2020/09/23/uncomfortable-questions-app-signing.html
https://commonsware.com/blog/2020/09/23/uncomfortable-questions-app-signing.html
https://developer.android.com/tools/bundletool
https://developer.android.com/tools/bundletool
https://developer.android.com/guide/app-bundle/code-transparency

[13] ——, “Android developers: Android app bundle frequently asked
questions,” online, Nov. 2023, accessed 2023-12-05. [Online].
Available: https://developer.android.com/guide/app-bundle/faq

[14] ——, “Google developers: Binary transparency,” online, Aug. 2023,
accessed 2023-12-05. [Online]. Available: https://developers.google.
com/android/binary transparency/overview#threat model

[15] S. B. Roosa and S. Schultze, “Trust darknet: Control and compromise
in the internet’s certificate authority model,” IEEE Internet Comput.,
vol. 17, no. 3, 2013.

[16] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security CCS, 2016.

[17] AppBrain, “Appbrain statistics: Facebook audience network,” 2024.
[Online]. Available: https://www.appbrain.com/stats/libraries/details/
facebook ads/facebook-audience-network

[18] Huawei, “Huawei developers: App bundles distribution,”
online, Dec. 2020, accessed 2024-04-19. [Online]. Avail-
able: https://web.archive.org/web/20201205143521/https://developer.
huawei.com/consumer/en/agconnect/app-bundle/

[19] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “Androzoo:
collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, 2016.

[20] D. Elliott, “The future of android app bundles is here,” online, Jun.
2021. [Online]. Available: https://android-developers.googleblog.com/
2021/06/the-future-of-android-app-bundles-is.html

[21] F. Draschbacher, “A2P2 - an android application patching pipeline
based on generic changesets,” in Proceedings of the 18th International
Conference on Availability, Reliability and Security, ARES 2023, 2023.

[22] B. Laurie, E. Messeri, and R. Stradling, “Certificate transparency
version 2.0,” RFC, vol. 9162, 2021.

[23] X. Wang, Y. Zhang, X. Wang, Y. Jia, and L. Xing, “Union under
duress: Understanding hazards of duplicate resource mismediation in
android software supply chain,” in 32nd USENIX Security Symposium,
USENIX Security, 2023.

[24] J. Wang, Y. Xiao, X. Wang, Y. Nan, L. Xing, X. Liao, J. Dong,
N. Serrano, H. Lu, X. Wang, and Y. Zhang, “Understanding malicious
cross-library data harvesting on android,” in 30th USENIX Security
Symposium, USENIX Security, 2021.

[25] J. Kim, J. Park, and S. Son, “The abuser inside apps: Finding the
culprit committing mobile ad fraud,” in 28th Annual Network and
Distributed System Security Symposium NDSS, 2021.

[26] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li, “An empirical
study of potentially malicious third-party libraries in android apps,” in
WiSec ’20: 13th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2020.

[27] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang, “Libscan:
Towards more precise third-party library identification for android
applications,” in 32nd USENIX Security Symposium, USENIX Security,
2023.

[28] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu,
“ATVHUNTER: reliable version detection of third-party libraries for
vulnerability identification in android applications,” in 43rd IEEE/ACM
International Conference on Software Engineering ICSE, 2021.

[29] W. Zhou, X. Zhang, and X. Jiang, “Appink: watermarking android apps
for repackaging deterrence,” in 8th ACM Symposium on Information,
Computer and Communications Security ASIA CCS, 2013.

[30] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a
scalable resource-driven approach for detecting repackaged android
applications,” in Proceedings of the 30th Annual Computer Security
Applications Conference ACSAC, 2014.

[31] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch, and
M. Mezini, “Codematch: obfuscation won’t conceal your repackaged
app,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering ESEC/FSE, 2017.

[32] L. Shi, J. Ming, J. Fu, G. Peng, D. Xu, K. Gao, and X. Pan, “Vahunt:
Warding off new repackaged android malware in app-virtualization’s
clothing,” in 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020.

[33] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing
android apps,” in 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2016.

[34] Q. Zeng, L. Luo, Z. Qian, X. Du, Z. Li, C. Huang, and C. Farkas,
“Resilient user-side android application repackaging and tampering
detection using cryptographically obfuscated logic bombs,” IEEE
Trans. Dependable Secur. Comput., vol. 18, no. 6, 2021.

[35] C. Ren, K. Chen, and P. Liu, “Droidmarking: resilient software water-
marking for impeding android application repackaging,” in ACM/IEEE
International Conference on Automated Software Engineering ASE,
2014.

[36] H. Ma, S. Li, D. Gao, D. Wu, Q. Jia, and C. Jia, “Active warden
attack: On the (in)effectiveness of android app repackage-proofing,”
IEEE Trans. Dependable Secur. Comput., vol. 19, no. 5, 2022.

[37] A. Aldoseri, T. Chothia, J. Moreira, and D. F. Oswald, “Symbolic
modelling of remote attestation protocols for device and app integrity
on android,” in Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, ASIA CCS, 2023.

[38] A. Shakevsky, E. Ronen, and A. Wool, “Trust dies in darkness:
Shedding light on samsung’s trustzone keymaster design,” in 31st
USENIX Security Symposium, USENIX Security 2022, 2022.

[39] M. Ibrahim, A. Imran, and A. Bianchi, “Safetynot: on the usage of
the safetynet attestation API in android,” in MobiSys ’21: The 19th
Annual International Conference on Mobile Systems, Applications,
and Services, 2021.

[40] S. Berlato and M. Ceccato, “A large-scale study on the adoption of
anti-debugging and anti-tampering protections in android apps,” J. Inf.
Secur. Appl., 2020.

[41] Y. Yang, M. Elsabagh, C. Zuo, R. Johnson, A. Stavrou, and Z. Lin,
“Detecting and measuring misconfigured manifests in android apps,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security CCS, 2022.

[42] A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in writing
android manifests: an empirical study of configuration errors,” in
Proceedings of the 14th International Conference on Mining Software
Repositories MSR, 2017.

[43] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and S. Fahl,
“Why eve and mallory still love android: Revisiting TLS (in)security
in android applications,” in 30th USENIX Security Symposium, 2021.

[44] C. Lenk and J. Kinder, “Poster: Privacy risks from misconfigured
android content providers,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2023.
ACM, 2023.

Appendix A.
Details of apps using CT for AAB

Table 3 lists all apps in our dataset that use CT and their
respective verification results.

Appendix B.
Fixes to implementation flaws

In this section, we discuss how the implementation flaws
in bundletool that we identified in Section 5.2.

https://developer.android.com/guide/app-bundle/faq
https://developers.google.com/android/binary_transparency/overview#threat_model
https://developers.google.com/android/binary_transparency/overview#threat_model
https://www.appbrain.com/stats/libraries/details/facebook_ads/facebook-audience-network
https://www.appbrain.com/stats/libraries/details/facebook_ads/facebook-audience-network
https://web.archive.org/web/20201205143521/https://developer.huawei.com/consumer/en/agconnect/app-bundle/
https://web.archive.org/web/20201205143521/https://developer.huawei.com/consumer/en/agconnect/app-bundle/
https://android-developers.googleblog.com/2021/06/the-future-of-android-app-bundles-is.html
https://android-developers.googleblog.com/2021/06/the-future-of-android-app-bundles-is.html

Package Name Version Publisher Valid CT Original Key Unique Key?

com.atakmap.android.bng.plugin 2.0.0-SNAPSHOT [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.compassnav.plugin 1.0 (8a9728b2) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.datasync.plugin 1.6.6 (1b388a2d) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.firesurvey.plugin 2.9.01.2 (95e2d92a) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.geocam.plugin 1.0 (0ffd4a57) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.grgbuilder.plugin 1.1 (3a1fc26f) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.takchat.plugin 1.0 (a43b4fbb) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.uastool.plugin 12.2 (f2ccbf8d) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.vns.plugin 3.6 (9d26d997) - [4.8.1] TAK Product Center Ë Ë Ë
com.atakmap.android.wave.plugin 2.0 (4bca9c49) - [4.8.1] TAK Product Center Ë Ë Ë
com.microsoft.loop 1.0.0321.00 Microsoft Corporation Ë ? Ë
com.neuflize.obc.bourse 5.6.8 Banque Neuflize OBCa Ë ? Ë
com.oracle.ebs.maintenance 10.0.0 Oracle America, Inc Ë ? Ë
com.oracle.ebs.scm.mwa.MSCA10 10.0.0 Oracle America, Inc Ë ? Ë
com.oracle.ebsapps.csm 10.0.0 Oracle America, Inc Ë ? Ë
com.oracle.events 1.0 Oracle America, Inc Ë ? Ë
com.portzamparc.bourse 5.6.8 Portzamparc SAa Ë ? Ë
com.somewearlabs.swtak.plugin 0.11.9 - [4.8.1] TAK Product Center Ë Ë Ë
net.bnpparibas.bourse 5.6.11 BNP PARIBASa Ë ? Ë

a. These apps likely are maintained by the same developer

TABLE 3: The apps in our dataset that use CT for AAB and their respective verification results. All apps contained a valid
Code Transparency (CT). In column Original Key, ? signifies that the original developer’s public CT key could not be
obtained. It therefore was not possible to check whether it matched the certificate found in the CT JWT. Unique Key denotes
that the app signing key was not reused as the CT key.

B.0.1. F4: Certificate Reuse. Checks need to be added to
APK generation in bundletool to ensure the CT key may
not be used as the app signing key. Additionally, the APK
verification result should include information on whether the
two keys are distinct.

B.0.2. F5: DEX or SO in Assets. This issue may be miti-
gated by aligning the CT verification policy with its creation
policy. The most sensible approach would be including all
DEX or SO files in the CT, irrespective of their location in
the AAB/APK.

B.0.3. F6: App Archiving. It is unclear whether the CT
scheme should allow such radical modifications of an app as
carried out through this feature. We believe that all source
code of the placeholder APK should at least be available for
public inspection.

	Introduction
	Background
	Android and its Security Architecture
	Android Platform Security Model
	Permission System
	Privileged Applications

	Android Package Format
	Universal APKs, Multi APKs, Split APKs
	APK Signature

	Android Application Bundles and Code Transparency
	AAB File Structure
	Bundletool
	APK Generation
	Code Transparency
	Code Transparency Attack Scenarios

	CT Attacker Models
	Attacker Goals
	Attacker Models

	Security Analysis of CT
	Design Flaws in CT
	Implementation Flaws in bundletool

	Attacks Against CT
	AAB and CT In Practice
	Prevalence of AAB and CT
	Android Application Bundle Prevalence
	CT Prevalence
	Verifying CT
	Susceptibility to CT Attacks
	Eligibility for CT and Possible Attacks Among Popular Apps

	Case Study
	Microsoft Loop

	Discussion & Future Work
	Improving AAB and CT
	Preventing infrastructure-level attacks
	Server-Side APK Generation

	Related Work
	Conclusion
	References
	Appendix A: Details of apps using CT for AAB
	Appendix B: Fixes to implementation flaws
	F4: Certificate Reuse
	F5: DEX or SO in Assets
	F6: App Archiving

