
Cryptographic Least Privilege Enforcement for
Scalable Memory Isolation

Martin Unterguggenberger, David Schrammel, Lukas Maar, Lukas Lamster, Vedad Hadžić, Stefan Mangard
Graz University of Technology: {firstname.lastname}@iaik.tugraz.at

Abstract—C/C++ computing systems constitute a significant
share of our critical software infrastructure and face substantial
security risks from memory exploitation. A single memory safety
error can potentially lead to the compromise of the entire
software system. To efficiently secure C/C++ computing systems
without extensive software adaption, the processor must be
able to restrict memory access to individual memory locations,
thereby enforcing the principle of least privilege. The integration
of lightweight and transparent isolation mechanisms that offer
flexible and scalable memory protection is crucial to minimize
the attack surface of software attacks.

In this paper, we present cryptographic least privilege enforce-
ment (CLPE), a novel mechanism for scalable memory isolation.
Our lightweight ISA extension enforces cryptographic integrity
checks for isolation granularities ranging from individual objects
to arbitrarily sized protection domains. We achieve this through
message authentication codes (MACs), linking pointers with
specific access privileges that restrict access to memory resources.
Our approach maintains compatibility with legacy software
and only minimally increases the processor’s microarchitectural
complexity. We provide a formal model of our design, ensuring
important properties of our ISA specification, and a hardware
model, allowing functional and timing-accurate simulation. The
simulated performance overhead of our hardware model shows
an average overhead of 2.5–7.4 % for the SPEC CPU2017
benchmark suite.

Index Terms—memory safety, principle of least privilege.

I. INTRODUCTION

Virtual memory-based process isolation provides strong
memory isolation by separating processes at the operating
system level. However, the lack of memory safety measures
within a process introduces a substantial security risk: a single
memory safety vulnerability [61] has the potential to com-
pletely compromise the target system. There is a strong need
for processor enhancements that provide fine-grain, efficient,
and transparent memory isolation to prevent the exploitation
of software vulnerabilities.

The principle of least privilege [52] is a fundamental
software paradigm typically enforced by the isolation of
distinct entities. Least privilege memory isolation in hardware
is particularly relevant to software built on memory-unsafe
languages by restricting unauthorized access to resources in
memory. Capability-based systems [14] implement the princi-
ple of least privilege at the architectural level. The CHERI
ISA [69], [70], [71] provides scalable memory isolation
through capability-based addressing. CHERI performs access
checks in hardware using fat pointers where the base, bounds,
and permissions are co-located with pointers to form capa-
bilities. Capabilities restrict access to the specified memory

ranges through dedicated capability registers and instructions.
Additionally, capability-based systems allow for privilege
management, e.g., the revocation of access privileges [19],
[72]. Despite the security benefits of CHERI, its deployment
can be challenging due to the significantly increased microar-
chitectural complexity and legacy incompatibilities.

In contrast, lightweight ISA extensions are largely transpar-
ent to the software (i.e., introducing no new dependencies)
and only require minimal hardware changes without affecting
the microarchitectural design of the CPU pipeline. The ARM
memory tagging extension (MTE) [57] and SPARC application
data integrity (ADI) [1], for example, integrate tagged memory
to enforce fine-grain access policies [25]. Tagged memory
architectures associate metadata, called memory tag, with each
memory granule on a defined size and granularity. Specifically,
ARM MTE and SPARC ADI employ a 4-bit memory tag with
a granularity of 16B and 64B, respectively. Both mechanisms
use pointer tagging and associate the tag with the correspond-
ing memory location. Subsequent memory accesses perform
logical integrity checks by comparing the pointer tag with
the tag assigned to the memory location. This allows memory
tagging to isolate individual objects, thus providing memory
safety. However, due to the limited tag size of 4 bits, tag
collisions are likely to occur, resulting in potential undetected
memory safety errors.

Intel memory protection keys (MPK) [49] are a lightweight
mechanism for page-based access control. MPK employs a
4-bit protection key stored in the page table entries (PTEs)
along with a user space protection key register (PKRU) to
implement page-level memory protection. PKRU-based pro-
tection schemes [10], [22], [55], [67] introduce transparent and
efficient domain isolation using MPK’s page-granular access
policies. Similar to Intel MPK, ARM memory domains also
use 4-bit domain IDs (akin to protection keys) for memory
isolation. Both mechanisms can be considered coarse-grain
memory tagging as they perform logical integrity checks at
a 4 kB page granularity. However, due to the limited 4-bit key
size, both Intel MPK and ARM memory domains offer only 16
distinct domains. This is restrictive as larger applications may
use up to thousands of concurrent execution contexts. Both
schemes also lack sub-page granular isolation, thus limiting
their applicability to object-level isolation.

In summary, existing memory isolation techniques are lim-
ited in providing one or more of the following properties:
strong detection capabilities, scalable isolation granularities,
support for numerous concurrent execution contexts, and min-

imal microarchitectural complexity. There is a strong need
for memory isolation mechanisms that unite these properties,
thus enabling scalable isolation levels (i.e., achieving memory
safety and domain isolation) within a single user-space process
while maintaining legacy compatibility.

In this paper, we present cryptographic least privilege en-
forcement (CLPE), a novel mechanism for memory isolation
that scales efficiently through cryptography. Our lightweight
ISA extension integrates cryptographic integrity checks using
message authentication codes (MACs). Memory operations
are transparently authenticated in hardware, utilizing recently
introduced low-latency block cipher designs [4], [5], [7], [34].
A MAC is directly associated with each pointer, enabling
fine-grain privilege management that supports frequent policy
changes with cryptographic strength. As a result, our ISA
extension detects memory safety errors with the security level
of the cryptographic MAC, offering several advantages over
established memory protection mechanisms:

(i) Cryptographic least privilege policies: The MAC asso-
ciates each pointer with a specific address range and restricts
memory access exclusively to that isolated memory region.
Thus, our new hardware feature allows privilege-centered
isolation for flexible memory protection similar to capability-
enhanced processors, e.g., the CHERI ISA. In contrast to these
processors, our hardware feature only minimally increases the
microarchitectural complexity.

(ii) Scalable isolation granularities: Our cryptographic
mechanism is efficiently scalable from single object isolation
(i.e., memory safety) to arbitrarily sized domain isolation, even
supporting secure interleaved memory sharing. In contrast,
mechanisms such as software-based fault isolation (SFI) [62],
[68] cannot provide this flexibility due to their partitioning of
contiguous memory regions. Other mechanisms that rely on
page-level isolation (e.g., Intel MPK) are bound to their page
granularity and cannot support finer levels of isolation.

(iii) Flexible number of execution contexts: Our crypto-
graphically enforced memory isolation allows thousands of
concurrent execution contexts (i.e., protection domains) while
supporting frequent policy changes. In contrast, isolation
mechanisms such as Intel MPK and ARM memory domains
only allow for 16 distinct domains, limiting their use.

(iv) Lightweight ISA extension: We only require minimal
hardware changes, being adaptable to complex processor mi-
croarchitectures. Moreover, our binary and ABI-compatible so-
lution can be easily integrated into legacy computing systems
by linking our security-hardened allocator, e.g., to safeguard
large and unmodified monolithic software.

In addition to the design of CLPE, we describe a formal
model consisting of a Sail specification of the ISA extension
and subsequently state and prove important properties of our
design. Furthermore, we provide a prototype implementation
consisting of a hardware model based on the gem5 simula-
tor [9], [37], a hardened memory allocator, and a Linux kernel
patch. The hardware model allows functional and timing-
accurate simulation. We evaluate our prototype implementa-
tion in terms of system performance, highlighting an average

overhead of 2.5–7.4 % for the subset of C benchmarks of
SPEC CPU2017 [13]. Moreover, we also provide an exten-
sive security analysis, including a systematic analysis and an
empirical evaluation using the NIST Juliet [12] test suite.
Contributions. In summary, our main contributions are:
(1) Cryptographic Least Privilege Enforcement. We

present a lightweight ISA extension for fine-grain mem-
ory isolation, enforcing the principle of least privilege
through efficient and scalable cryptography.

(2) Formal Model of the ISA Extension. We describe and
verify a formal ISA specification of our design.

(3) Hardware Model for Evaluation. We implement and
evaluate a proof-of-concept prototype, demonstrating that
our design is practical.

(4) Systematic Security Analysis. We systematically ana-
lyze the security of our ISA extension and empirically
evaluate the efficacy of our design.

Outline. The remainder of the paper is organized as follows.
Section II discusses the background of this work. Section III
and Section IV describe the design and formal model of our
ISA extension. Section V details our proof-of-concept imple-
mentation. Section VI and Section VII provide the security
analysis and performance evaluation. Section VIII discusses
related work, and Section IX concludes this work.

II. BACKGROUND

This section provides background on memory safety errors
and cryptographic memory protection.

A. Memory Safety Errors

Software developed using memory-unsafe programming
languages, such as C and C++, grants developers substantial
control over data stored in memory. However, programming
bugs can lead to exploitable memory safety errors, a prevalent
type of software vulnerability [40], [63]. Memory safety
vulnerabilities allow an adversary to manipulate the program’s
state and consequently alter the behavior of the execution.
Memory safety errors can be classified into spatial and tem-
poral memory safety vulnerabilities [61].

Spatial memory violations, such as out-of-bounds (OOB)
errors, allow an attacker to either leak or modify sensitive
data. A spatial memory violation occurs when a pointer
is dereferenced outside the intended memory boundaries of
the associated object. For instance, a linear buffer overflow
accesses data adjacent to the memory location of the buffer, al-
lowing this adjacent data to be leaked or corrupted. Moreover,
an arbitrary memory access violation allows data manipulation
in non-adjacent memory locations.

Temporal memory violations typically use dangling pointers
(i.e., pointers that refer to freed memory objects) to perform
a use-after-free (UAF) access. Specifically, an attacker can
misuse a dangling pointer to access the data of a freed memory
object. The UAF error can be exploited to leak or corrupt
potentially sensitive data that resides in the same memory
location. UAF errors are further categorized depending on
the memory state (whether the memory is free or has been

reallocated). UAF errors that affect memory in the reallocated
state are critical. Precisely, if the memory has been reallocated,
the attacker can access the reallocated and potentially sensitive
object. Moreover, double-free errors are a special case of UAF,
allowing an object to be freed twice.

B. Cryptographic Memory Protection
Cryptography is a versatile building block for system secu-

rity. It addresses a wide range of security concerns through
cryptographic primitives such as encryption and authentica-
tion. Various academic and commercial designs introduce
different mechanisms based on cryptographic primitives to
implement security measures for memory safety [53], [54],
memory integrity [27], and software isolation [64].

Cryptographic pointer integrity [15], [39], [50] can be used
to protect against control-flow hijacking attacks. ARM pointer
authentication (PAuth) [50], for instance, uses a MAC encoded
in the upper bits of the pointer to ensure pointer integrity
while stored in memory. Security researchers have proposed
ISA extensions [35], [46], [65] that leverage cryptographic
building blocks to enforce memory safety. These techniques
use cryptography to enforce confidentiality or integrity (or
both) of data stored in memory. In addition, there have been
academic proposals for secure enclave architectures [60] and
DRAM integrity protection schemes [18], [27], [32], [33]
based on cryptographic primitives.

III. DESIGN

This section presents our novel ISA extension designed
to enable fine-grain and scalable memory isolation through
efficient low-latency cryptography. At its core, our design
cryptographically binds memory access privileges to pointers,
enabling least privilege policies that detect access violations
with cryptographic strength. To achieve scalable isolation, we
use a message authentication code (MAC) to perform fine-
grain and implicit cryptographic integrity checks for every
memory operation. Similar to pointer tagging, the MAC is
encoded into the unused upper bits of the pointer. Thereby,
we construct a cryptographic lock-and-key mechanism where
access to a memory location is solely granted with the corre-
sponding access privileges. The MAC represents the pointer’s
access privileges to specific memory regions, enforcing the
principle of least privilege.

A. Threat Model
Our threat model is consistent with existing research on

memory safety [21], [28], [35], [65], [73]. We assume that one
or more memory safety vulnerabilities are present in the target
user space program, granting an adversary arbitrary read-and-
write capabilities. Additionally, we presume that the attacker
has knowledge of the address space layout (i.e., is able to
bypass ASLR).

However, we assume Write-XOR-Execute is enabled, pre-
venting the injection of arbitrary code. We also assume the
operating system is trusted and free of exploitable program-
ming errors. Note that microarchitectural attacks [30], [36] and
fault attacks [29], [43] are beyond the scope of this work.

MAC

MAC

Upper Virtual Address Offset
63 VA Size 0

Key from PTE

ID Radix

Compute MACVerify

Fig. 1: The cryptographic lock-and-key mechanism for least
privilege enforcement. Memory operations are implicitly ver-
ified using cryptographic integrity checks. The MAC is com-
puted at every read and write operation and compared against
the MAC encoded in the pointer.

B. Design Properties

We define the following key properties for our design
to address the challenges of memory isolation for modern
computing systems and legacy software:
• Principle of least privilege: Our design cryptographically

enforces the least privilege principle for memory operations
transparently in hardware.

• Scalable isolation granularities: Our approach supports
memory isolation that scales from the level of individual
objects (i.e., memory safety) to the isolation of arbitrarily
sized domains, depending on the security requirements of
the respective software module.

• Flexible number of execution contexts: Our design allows
the isolation of an arbitrary number of concurrent execution
contexts (i.e., protection domains) while also supporting
frequent policy changes.

• Lightweight ISA extension: Our extension only minimally
increases the CPU’s microarchitectural complexity and pre-
serves binary and ABI compatibility.

C. Secure Hardware Architecture

Our ISA extension incorporates cryptographic integrity
checks, validating the pointer’s access privileges on every
memory operation. For this, we utilize MACs encoded in
the pointer, representing its access privileges. This crypto-
graphic lock-and-key approach allows us to enforce least
privilege policies for scalable isolation granularities ranging
from single-byte object-granular isolation to the isolation of
arbitrarily sized protection domains.
Pointer Layout and MAC Generation. Figure 1 illustrates
the cryptographic lock-and-key approach. Our scheme uses a
6-bit radix in combination with a 4-bit ID as page-granular
metadata, both of which are stored in the PTE. The radix
divides a pointer into two parts: an upper fixed address part
and a lower offset part. The upper fixed part of the address is
used for the MAC computation, together with the radix, the ID,
and a secret per-process key. When the pointer is signed (e.g.,
during a memory allocation), the resulting MAC is encoded in
the upper bits of the pointer. The derived MAC grants access
privileges solely to memory with the power-of-two bounds
set by the radix. The lower offset part of the pointer can be

x y y zComputer’s
Physical Memory

Virtual Memory

Page Table
Entries

512B Objects 4 kB Pages 4 kB Page 4 kB Page

a b c d e f g h

R/W

ID 1 Radix
512B

a b c d e f g h

R/W

ID 1 Radix
4 kB

x

R/W

ID 2 Radix
16 kB

y

R/W

ID 2 Radix
16 kB

y

R/W

ID 3 Radix
16 kB

z

R/W

ID 4 Radix
4 kB

R/W

ID 1 Radix
4 kB

R

ID 2 Radix
1 kB

i

i

ptrA[0]
✗

ptrE[512] ptrX[0] ptrY[0]
✗

ptrY[8192] ptrZ[2048]
✗

ptr_revoked[0] ptr_main[0] ptr_shared[0]

(a) Sub-Page Granular Memory Isolation (b) Page Granular Memory Isolation (c) Revocation (d) Interleaved Memory Sharing

Fig. 2: Overview of the different cryptographic least privilege policies enforced by our ISA extension.

modified (e.g., through pointer arithmetic) to point to different
locations within this memory region.
MAC Verification. Memory operations are implicitly verified
using cryptographic integrity checks performed by the proces-
sor’s microarchitecture. This validation restricts pointer deref-
erences to their designated memory region. During memory
access, our hardware-enforced authentication recomputes the
cryptographic MAC in the same way as the initial generation.
The encoded and recomputed MAC are then compared for
equality (cf. Figure 1). As a result, memory safety errors
that allow dereferencing a pointer outside its access privileges
will be detected by the MAC verification, thus preventing
illegal memory access. Moreover, we use the ID to enforce
different privilege policies at a page granularity. This allows
us to directly revoke access privileges for pointers by updating
the ID (or radix) of the PTE. The cryptographic integrity
check validates that a pointer has the corresponding access
privileges for a memory location, indicated by a success-
ful MAC authentication. Note that the hardware architecture
ensures validity for the entire data width of the memory
operation. Any alteration of the upper fixed address, radix,
or ID influences the MAC calculation (i.e., memory accesses
outside the intended memory region or revoked privileges),
resulting in a failed MAC authentication and immediately trig-
gering a hardware exception leading to program termination
by the OS. Consequently, the pointer becomes unforgeable
within the cryptographic bounds of the MAC and can only be
dereferenced within its intended memory region.
Legacy Compatibility. Our pointer layout (i.e., pointer
tagging) is largely compatible with existing C/C++ computing
systems. The pointer can be used for pointer arithmetics
or array indexing within its allowed bounds. Furthermore,
for compatibility with legacy software, we designate legacy
memory locations using a distinct radix encoding (i.e., all radix
bits set to ones). This allows legacy memory locations to be
accessed using legacy pointers without a MAC, while memory
access to protected memory is always authenticated. Thus,
legacy pointers cannot be used to access protected memory.
Note that legacy and protected memory are not co-located
within a single page. This allows us to be binary compatible
without compromising security or usability.

D. Cryptographic Least Privilege Policies

In the following, we discuss four policies on how our design
enforces scalable memory isolation and revocation of access
privileges. Figure 2 provides an overview of the different
policies enforced by our ISA extension.
Sub-Page Granular Memory Isolation. Within a page,
several different memory objects can be isolated from each
other, given that each of them resides in its own power-of-two
region. Figure 2a shows an example in which a 4 kB page is
used for eight 512B objects. To isolate the objects against each
other, we set the radix for this page to 512B, ensuring that
the signed pointers to these objects are restricted to accessing
their object and are prohibited from accessing the other seven.
As the upper fixed part of each pointer varies between distinct
512B objects, an out-of-bounds (OOB) access results in a
MAC mismatch and, thus, a verification failure. This radix-
based isolation works with arbitrarily small (power-of-two)
granularities down to a single byte.
Page Granular Memory Isolation. To isolate objects larger
than a page, allocations need only be aligned to a page size
(i.e., 4 kB), as long as no other PTE exists within that power-
of-two region that has the same radix and ID pair. The memory
allocator can efficiently manage this policy. For example, all
unused pages within the given power-of-two page can be left
unmapped. Note that this does not use any additional physical
memory. Alternatively, the virtual pages in that region can still
be used as long as the radix or ID is different since a signed
pointer can only access pages with correct PTE metadata.

Our scheme also allows access to memory regions of non-
power-of-two size by interleaving radices. The ID is used to
limit the access privileges of overlapping radix power-of-two
sizes for large memory regions. For instance, a 12 kB (i.e.,
3 pages) memory object is given a radix value that allows it
to access a 16 kB region (i.e., 4 kB more than it should have
access to). This 16 kB region has 4 PTEs, each mapping to
4 kB pages. However, the PTE of the last 4 kB page uses a
different radix or ID. As a result, the first 12 kB can be isolated
from the adjacent 4 kB.

Figure 2b depicts a similar case. There, the 8 kB memory
region y gets a radix of 16 kB, as that particular region is not

8 kB-aligned. Since the two adjacent memory regions (i.e.,
x and z) use different radices or IDs, all three objects are
isolated from each other. Therefore, by properly selecting the
ID values for large memory regions, we can securely interleave
different radix sizes with no loss in security or usable memory.
Notably, the same ID values can be reused freely for different
non-overlapping radices.
Revocation. The radix defines the power-of-two size of the
memory range that is cryptographically linked to the pointer,
while the ID field acts as a version number. To revoke the
access privileges of existing pointers, it is sufficient to update
either the radix or the ID in the PTE, thus invalidating all
previous pointers to objects on that page. If the same radix
and ID pair is not reused for that page, a revoked pointer can
never be used again without causing an exception. Figure 2c
shows this where the memory of ptr_revoked used to have
ID 4 but has since been updated.
Interleaved Memory Sharing. Figure 2d depicts how differ-
ent radices may be used on a single physical page via memory
aliasing. If a sub-range of memory needs to be shared (e.g.,
to an untrusted function), a new PTE can be generated with a
different radix and ID. The PTE may also set different page
permissions, such as read-only. The resulting pointer would
then only have access to that sub-range limited by the radix.

E. Isolation of Objects and Domains

The cryptographic integrity checks provided by our ISA ex-
tension enable the isolation of individual objects (i.e., memory
safety) and the isolation of protection domains.
Spatial Memory Safety. We enforce spatial safety through
specific memory management and alignment facilitated by
binning memory allocators. Binning memory allocators group
identical-sized objects in buckets. We take advantage of this
structure, as all slots within a bucket have the same size.
Thus, our page-granular metadata (i.e., radix and ID) applies
to the entire bucket. In our case, buckets use power-of-two
sizes, which facilitates for the detection of spatial memory
safety errors. Any spatial memory violation modifies the
upper part of the virtual address, which results in a failed
MAC authentication and is detected within the cryptographic
security bounds.
Temporal Memory Safety. We enforce temporal memory
safety by combining our mechanism with a memory quar-
antining strategy [2], [19]. Conceptually, freed memory is
quarantined and only reused after ensuring temporal safety
requirements. We isolate freed objects in quarantine for each
page until all objects within that page are freed. Subsequently,
we assign a new ID to that page, which automatically revokes
access for potential dangling pointers. Since the updated ID
results in a failed MAC authentication (within cryptographic
bounds), it prevents potential dangling pointers from accessing
objects on the respective page. This allows us to revoke and
reuse virtual pages up to 16 times, as we have a 4-bit ID.
After exhausting the provided ID range, we propose three
approaches. First, one can opt to not use the virtual address
of that page anymore, resulting in a slight decrease in usable

virtual address space. Second, the particular virtual page can
be reused for a different bucket size (i.e., different radix).
Third, memory scanning [8] can be used to identify potential
dangling pointers before reuse.
Protection Domains. Similar to spatial memory safety,
sub-page granular isolation is achieved through power-of-
two memory alignment, which enforces radix-aligned memory
protection. Larger (i.e., at least page-sized) regions are page-
size aligned and isolated by a unique ID within the radix
region. Similar to temporal memory safety, when an execution
context ends, we update the ID of all of the context’s pages
(up to 16 times). This prevents dangling pointers from old
execution contexts, which may still exist elsewhere in the
program, from being used.
Interleaved and Revocable Memory Sharing. As shown
in Figure 2d, our design also supports secure (interleaved)
shared memory between one or more protection domains.
We use page table aliasing to establish shared memory be-
tween two distinct execution contexts, with privilege policies
enforced by the radix and ID in the respective PTE. For
instance, our design allows for fine-grain shared memory at
the sub-page level through the radix in the aliased PTE.
The corresponding pointer has access privileges only to the
(sub-page) shared memory location, given a radix power-
of-two alignment. Again, spatial violations are prevented by
the radix boundaries enforced by the cryptographic integrity
checks of the hardware feature. We also enforce the page-
granular read-and-write permission present in the aliased PTE
(via the mprotect system call), enabling read-only sharing.
Revocation of aliased shared memory objects is achieved by
updating the ID in the aliased PTE without having to unmap
the shared memory entirely. Similar to temporal safety, an
updated ID invalidates pointers to shared memory objects. By
using more aliases, memory objects can be shared between
multiple domains, each with different access permissions.

IV. FORMAL MODEL

In the following, we formalize the proposed ISA extension
in the domain-specific language called Sail [3]. The reason we
chose Sail is its powerful type system and versatile backends,
as well as its use in the industry, e.g., for the official RISC-V
specification [42]. Moreover, being able to export Sail code
to logic formulas in the satisfiability modulo theories (SMT)
format [6], we are able to formally verify desired properties
of our ISA extension.

A. Sail Specification

Sail is a strongly typed language with automatic type
inference. For the purpose of defining our ISA extension, we
first define type aliases for bit-vectors of appropriate size for
each of the key components, e.g., a 16-bit tag type tag_t,
a 6-bit radix type radix_t, a 4-bit ID type id_t, etc.
Moreover, we define utility functions for various parts of the
existing ISA, bit-vector manipulation, and memory interface.
Signing Userspace Addresses. A key component of the
proposed scheme is the signing of userspace addresses, with

Listing 1: Sail specification of useful signing utilities.� �
register key : key_t
val mac : (key_t, msg_t) -> tag_t

val sign : (uaddr_t, radix_t, id_t) -> tag_t
function sign(uaddr, radix, id) = {
if radix == legacy_radix then
return zeros(sizeof(tag_len));

let mask : uaddr_t = ~(to_unary(radix));
return mac(key, radix @ id @ (uaddr & mask));

}� �
Listing 2: Sail specification of the signing instruction.� �

val instr_sign : (rex_t, modrm_t, sib_t, disp_t) -> unit
function instr_sign(rex, modrm, sib, dis) = {
let reg_id : reg_t = decode_regid(rex, modrm);
let src_val : u64_t = decode_src(rex, modrm, sib, dis);
let _ @ uaddr : uaddr_t = gprs(reg_id);
let _ @ radix : radix_t = src_val[7 .. 0];
let _ @ id : id_t = src_val[15 .. 8];
let tag = sign(uaddr, radix, id);
gprs(reg_id) = tag @ 0b0 @ uaddr;

}� �
their associated radix and ID, using a cryptographic MAC and
a per-process secret key. Listing 1 gives a formalization of
this procedure, as described in Section III-C. Here, we define
a global register key of the appropriate type key_t, and
declare a function mac that maps a key and message to a
cryptographic tag. Note here that Sail allows uninterpreted
functions within specifications, as long as typing constraints
are fulfilled, and we use this to leave the details of the mac
function up to the actual implementation. Finally, Listing 1
defines the actual sign function. First, the function handles
the special case for legacy radices, producing a zero tag. Oth-
erwise, the resulting tag is computed using the mac function,
whose message input is the concatenation of the radix, ID,
and the userspace address with its lowermost bits masked out
according to the radix.
New Signing Instruction. While the proposed approach is
ISA agnostic, we give a concrete example of how the signing
could be implemented in an extension to the x86-64 ISA.
Listing 2 shows the specification of a new x86-64 instruction
for the computation of signatures. The instruction has two 64-
bit operands; the first always being a register, and the second
coming from either another register or memory. On x86-64,
operands are decoded from a ModR/M byte, an optional REX
instruction prefix, and in the case of memory operands, an
optional SIB byte and optional address displacement of up
to 32-bit [23]. These decoding details are abstracted away in
Listing 2 through the decode_regid and decode_src
utilities. The userspace address is extracted from the first
operand, the radix and ID are extracted from the two low-
ermost bytes of the second operand, ignoring the unused
uppermost bits. Finally, the tag is computed with the sign
function, appended to the userspace address, and written back
to the first operand. No flags are affected.
Memory Access Checks. Finally, we also formally specify
the checks performed for each aligned memory access, as
shown in Listing 3. The check consists of several phases.

Listing 3: Sail specification of the additional checks performed
before each memory access.� �
val new_check_memop : (vaddr_t, data_size_t) -> status_t
function new_check_memop(vaddr, len) = {

let tag : tag_t @ raddr : raddr_t = vaddr;
if raddr[47] == bitone then
return check_memop(vaddr, len);

let vpnum : vpnum_t @ _ = raddr;
let radix : radix_t = radices(vpnum);
let id : id_t = ids(vpnum);
let mask : uaddr_t = ~(to_unary(radix));

let _ @ uaddr_f : uaddr_t = raddr;
let uaddr_l = uaddr_f + zero_extend(size_mask(len));
if (uaddr_f & mask) != (uaddr_l & mask) then
return Error_radix_overflow(uaddr_f, radix, len);

let comp_tag = sign(uaddr_f, radix, id);
if comp_tag != tag then
return Error_tag_wrong(comp_tag, tag);

return check_memop(zero_extend(raddr), len);
}� �

First, the provided virtual address is split into the tag and
canonical address part raddr. In case of kernel addresses,
the standard access check is performed. Next, the virtual page
number vpnum is extracted from raddr and used for the
TLB lookup, respectively page table walk, to retrieve the radix
and ID. Furthermore, we check whether the whole memory
access of length len is within the same radix region, and
give an error otherwise. Finally, the tag is recomputed using
the sign function and compared to the provided tag. If
there is a mismatch, an error is produced, and otherwise, the
standard access check is performed with the clean userspace
address. Note here that non-canonical memory accesses now
also produce the tag mismatch error.

B. Verifying Specification Properties

An interesting capability of the Sail language is the writing
of properties, which are specially defined Sail functions that
produce Boolean outputs, and can be turned into a logic
formula. Afterwards, one can use off-the-shelf SMT solvers,
such as Microsoft’s Z3 [16], to prove the given functions
always return true. We have implemented and checked several
properties our specification should fulfill. We give a brief
(informal) overview in the following:
• Legacy compatibility: Unprotected legacy pointers can

access unprotected memory, same as before extension.
• Tag consistency: It is not possible to successfully access a

canonical userspace address with the wrong tag.
• Region isolation: All wide memory accesses that overflow

into an adjacent memory region produce an error.
During the development of the properties, Z3 routinely found
counterexamples, e.g., whenever we were missing an assump-
tion. After we refined the property definitions accordingly, Z3
was able to instantaneously prove that the properties hold.
Moreover, we believe the given specification should be useful
for verifying functional correctness of real-world hardware
implementations later on [3], [11].

V. IMPLEMENTATION

In this section, we detail our prototype implementation,
including a hardware model, allocator, and kernel patch.

A. Hardware Model

Our prototype is built on the open-source gem5 simula-
tor [9], [37] (gem5 version 22.1.0.0), a widely used full-
system simulator for the implementation and evaluation of
hardware extensions [28], [32], [33], [38], [65]. The gem5
prototype features a functional and timing-accurate hardware
model of our ISA extension, integrating the cryptographic
integrity checks into the CPU’s microarchitecture. Moreover,
it is fully parameterizable regarding the MAC computation
latencies. While our design is ISA agnostic, we implement
our gem5 prototype specifically for the x86-64 architecture.
Implementing our ISA extension requires a small set of modi-
fications to the CPU microarchitecture. The system integration
includes the following changes to our gem5 simulator:

First, we implement hardware address masking to enable
a pointer tagging mechanism. The gem5 simulator utilizes
memory requests, which are issued by a software module
responsible for managing load and store operations. These
requests provide a high-level abstraction for all memory
operations of the underlying ISA. We modify the load and
store unit to mask the address before generating the memory
request. This allows us to propagate the upper bits of the
pointer (i.e., the pointer tag) as metadata associated with the
memory request. The specific number of upper bits utilized for
the hardware address masking depends on the virtual address
mode. For instance, the 48-bit addressing mode allows us to
use the 16 uppermost bits to encode the MAC. The hardware
address masking propagates the MAC as metadata for every
issued memory request.

Next, we perform the integrity checks (i.e., hardware au-
thentication) during the translation lookaside buffer (TLB)
lookup for every memory operation accessing protected pages.
The gem5 simulator performs the address translation for every
memory request issued by the hardware model. The page table
walker resolves the virtual-to-physical mapping and caches the
corresponding page table entry (PTE) in the TLB. In addition,
the memory management unit (MMU) performs access per-
mission checks (e.g., read, write, execute) using the permission
bits stored in the PTE. Our mechanism incorporates the radix
and ID in the PTE, which can be set by the OS kernel using the
syscall interface (mprotect-like system call). Similar to the
other page permission checks, we integrate our cryptographic
integrity checks into the MMU. As shown in Listing 3, we use
a low-latency block cipher to recompute the MAC using parts
of the address, radix, and ID (with a unique per-process secret
key), and compare it against the MAC metadata propagated
through the memory request. Additionally, the MMU ensures
validity for the entire data width of the memory request. A
MAC mismatch indicates a memory safety error and triggers
an exception for the corresponding memory request. Access
to protected pages is only granted for pointers with the corre-
sponding access privileges. We reserve a special radix value

to identify legacy memory pages, allowing legacy pointers to
access the memory locations. The synchronous cryptographic
integrity checks of our gem5 hardware model influence the
L1 access latency since the MAC validation needs to be
finished before processing the received data. Suitable cipher
candidates for our ISA extension are BipBip [7], QARMA [4],
QARMAv2 [5], and SPEEDY [34]. Depending on the block
cipher in use and the processor’s clock frequency, the cipher
latency varies between 1–3 cycles. Our gem5 hardware model
is fully parameterizable regarding cipher latencies, which is
reflected in our performance evaluation.

Lastly, we extend the x86-64 instruction set to integrate the
custom Sign instruction specified in Listing 2. Alternatively,
one could also implement a software-based signing operation
with the same functionality.

B. Memory Allocator

Our prototype implementation is based on the musl C stan-
dard library (musl-libc version 1.2.3). Leveraging our novel
hardware feature, we modify the binning memory allocator
to enforce our cryptographic least privilege isolation on all
heap-allocated objects. As such, it is binary-compatible and
can be linked to existing C applications. We instrument all
malloc-related function calls to return and operate on signed
pointers. When requesting a new page from the operating
system, the allocator also sets the ID and radix through the
mprotect system call. As each bucket contains only power-
of-two slots, all pages within that bucket share that same radix.
Our allocator conforms to the slot sizes by rounding up the
allocated size to the next power-of-two. When handing out
pointers to the userspace application, e.g., before returning
from malloc, the allocator signs the returned pointer using
the Sign instruction of our extended x86-64 ISA. Since the
ID and radix are used for the signature, the allocator stores
both in per-bucket metadata to avoid additional system calls
during pointer signing. Moreover, to ensure temporal memory
safety, the memory allocator quarantines freed objects within
a page until all objects on that page are freed. Once all objects
are freed, the allocator assigns a new ID for that page, thus
invalidating any dangling pointers referencing that page.

C. Linux Kernel Patch

To enable the setting of ID and radix values in the PTEs,
we extend the mprotect system call with additional ar-
guments (similar to pkey_mprotect). Similar to other
(PTE) permission bits, we store our page metadata in the
vm_area_struct structure. We encode the 6-bit radix and
4-bit ID into the PTE, repurposing previously unused bits by
the ISA (i.e., x86-64 PTE [24]). We repurpose the four Intel
MPK bits for our implementation. In addition, 9 bits (bits 58–
52 and 10–9) are currently unused and ignored, which leaves
a total of 3 bits for future use. Note that in practice, several
different options are available. For instance, it is also possible
to encode the ID and radix in the upper physical address bits.
However, this would reduce the addressable physical memory.

VI. SECURITY ANALYSIS

This section provides a systematic analysis (i.e., on memory
errors) of our design and an empirical security evaluation.

A. Systematic Analysis

Our ISA extension enables scalable memory isolation with
cryptographic strength. The prototype implementation uses
the 48-bit virtual addressing mode, which allows for a 16-
bit MAC. Note that using the 39-bit virtual addressing mode
would allow us to encode a 25-bit MAC. For this analysis,
we generalize the MAC size to M bits. Assuming a crypto-
graphically secure MAC, a collision (i.e., second preimage
resistance) occurs with a probability of 2−M . An attacker
could also try to predict the correct MAC value to access data
in an arbitrary memory location. This forgery attempt leads
with a high probability (1− 2−M) to a hardware exception.

An attacker could attempt to forge a legacy pointer to bypass
the cryptographic integrity checks. However, our design pro-
hibits any memory access using legacy pointers to protected
memory. Thus, it is not possible to bypass our protection
mechanism by using legacy pointers.

In addition, our ISA extension achieves memory safety (i.e.,
object-granular isolation) through the use of a binning memory
allocator, which locates same-size objects on the same buckets
(and pages). Moreover, every memory object is aligned to a
power-of-two size represented by the radix. Thus, linear buffer
overflows are prevented since overflowing from one radix into
an adjacent one is detected by the memory access checks.
Similarly, arbitrary memory safety violations are detected by
the integrity checks, i.e., MAC authentication.

A special case of spatial memory vulnerability is the sub-
object memory violation, where data is corrupted within
an object outside the intended internal boundaries (e.g., C
structures). We exclude sub-object memory violations since
our protection mechanism operates on an object granularity.
Furthermore, recent studies show that sub-object violations
only account for around 1 % of observed vulnerabilities [40].

We prevent use-after-free (UAF) errors through memory
quarantining [2], [19]. UAF errors are caused by dangling
pointers referencing already freed memory locations. Here,
we need to distinguish two cases: UAF in the freed and
reallocated state. UAF in the freed state defines that no object
has been reallocated on the same chunk of memory, and
the reallocated state defines that a new object is assigned to
the previously freed chunk of memory. Moreover, dangling
pointers to memory in the reallocated state can be exploited
to modify the data of the new memory object. To counteract
UAF errors, our memory allocator puts freed objects into
quarantine and waits until all objects within the page are freed.
Subsequently, we assign a new ID to the page, and the page
can be reused. Thus, memory accesses using a dangling pointer
(UAF in the reallocated state) are mitigated by the integrity
checks since the IDs mismatch. We can reuse every page until
all unique IDs are used and afterwards return the page to the
OS or scan the memory for potential dangling pointers [8].
Note that our design cannot detect UAF in the freed state due

TABLE I: The results of the empirical security evaluation for
CWE-122 and CWE-416 of the NIST Juliet test suite.

CWE Description Number of Test Cases Passed

CWE-122 Heap buffer overrun 1368 Test Cases 100 %
CWE-416 Use-after-free (UAF) 138 Test Cases 100 %

to this imprecision; however, protecting the reallocated state
is typically the crucial property of UAF.

Similarly, double-free errors are detected. In the freed state,
a double-free is detected since the memory chunk is in
quarantine. In the reallocated state, a double-free is detected
by the integrity check of an access before freeing the object.

Moreover, uninitialized use of memory is also classified as
a temporal safety vulnerability. While this threat is not directly
addressed by our design, it can be relatively easily mitigated by
enforcing memory initialization (pool zeroing) before usage.

B. Empirical Security Evaluation

We use the Juliet [12] test suite (Juliet version 1.3) for
our empirical security evaluation to demonstrate the efficacy
of our design. Juliet provides test cases for common types
of memory safety errors, categorized as common weakness
enumerations (CWEs) [41], divided into good and bad types
for each test case. In particular, we focus on the subset of
C benchmarks for CWE-122 heap buffer overrun and CWE-
416 use-after-free of the Juliet test suite. Note that Juliet
was initially designed for testing static analysis tools, not
for runtime testing. As a result, some test cases may require
specific input stimuli, cause the test program to crash, or not
necessarily trigger an actual memory safety violation. In order
to reasonably evaluate Juliet’s benchmarks, we use the Address
Sanitizer (ASan) [56] to identify the subset of benchmarks
that trigger detectable memory safety errors. Additionally, we
exclude sub-object memory violations as they are not covered
in our prototype implementation.

Furthermore, our design requires minor adjustments for
some of the Juliet benchmarks. For instance, some test cases
of CWE-122 need to be adapted to trigger an actual heap
overrun since our memory allocator aligns all memory objects
to bucket sizes. With these adaptations, an overflow that
would originally corrupt padded memory locations (which
are not security-critical) will now corrupt the memory of an
adjacent or non-adjacent object. Similarly, CWE-416 needs to
be adapted as some of these benchmarks perform the UAF
access in the freed state. We instrument the benchmark to
perform the UAF error in the reallocated state (the crucial
UAF detection property). Table I highlights the results of
the empirical security evaluation using CWE-122 and CWE-
416 of the NIST Juliet test suite. We define a test case
as successful if the cryptographic integrity checks of our
ISA extension trigger a hardware exception. In summary, our
scheme successfully detects all memory safety errors for the
subset of CWE-122 (heap buffer overrun) and CWE-416 (use-
after-free) test cases identified by ASan.

602.gcc_s

605.mcf_s

619.lbm_s

625.x264_s

638.im
agick_s

644.nab_s

657.xz_s

502.gcc_r

505.mcf_r

519.lbm_r

525.x264_r

538.im
agick_r

544.nab_r

557.xz_r

Geomean SPEC
0

5

10

15

20

2
.0

%

3
.2

%

1
.9

% 3
.2

%

2
.3

%

3
.0

%

1
.8

%

2
.0

% 3
.2

%

2
.3

%

3
.2

%

2
.3

%

3
.0

%

1
.8

%

2
.5

%

3
.5

%

6
.4

%

3
.8

% 6
.4

%

4
.5

% 5
.9

%

4
.0

%

3
.5

%

6
.4

%

4
.5

% 6
.4

%

4
.4

% 5
.9

%

4
.0

%

5
.0

%

4
.9

%

9
.6

%

5
.7

%

9
.6

%

6
.6

% 8
.8

%

6
.2

%

4
.9

%

9
.6

%

6
.7

%

9
.6

%

6
.6

% 8
.8

%

6
.1

% 7
.4

%

Pe
rf

or
m

an
ce

O
ve

rh
ea

d
[%

]
+1-cycle cipher delay +2-cycle cipher delay +3-cycle cipher delay

Fig. 3: The simulated relative runtime overhead of heap
memory isolation using different cipher latencies, ranging
from 1–3 cycles, for the SPEC CPU2017 benchmark suite.

602.gcc_s

605.mcf_s

619.lbm_s

625.x264_s

638.im
agick_s

644.nab_s

657.xz_s

502.gcc_r

505.mcf_r

519.lbm_r

525.x264_r

538.im
agick_r

544.nab_r

557.xz_r

Geomean SPEC
0

5

10

15

20

6
.9

%

9
.6

%

5
.3

%

9
.6

%

6
.7

% 9
.0

%

6
.2

%

6
.9

%

9
.6

%

6
.4

%

9
.6

%

6
.7

% 8
.9

%

6
.1

% 7
.7

%

6
.0

%

9
.7

%

5
.3

%

9
.6

%

6
.6

% 9
.2

%

6
.2

%

6
.0

%

9
.7

%

6
.4

%

9
.6

%

6
.6

% 9
.2

%

6
.1

% 7
.6

%

Pe
rf

or
m

an
ce

O
ve

rh
ea

d
[%

]

spatial memory safety spatial and temporal memory safety

Fig. 4: The simulated relative runtime overhead of heap
memory safety through single object isolation with a 3-cycle
latency for the SPEC CPU2017 benchmark suite.

VII. EVALUATION

This section evaluates the system performance of our pro-
totype and discusses the area and alignment overhead.

A. Performance Evaluation

The evaluation of our hardware model uses a subset of
C programs of the SPEC CPU2017 [13] benchmark suite,
compiled using our modified musl-libc with -O3 optimiza-
tion level. All benchmarks are executed in full-system mode
running Linux (kernel 5.15.67) with our patch applied.
Configuration. For our performance evaluation, we use the
following gem5 configuration. We use the TimingSimpleCPU
model with a clock frequency of 3GHz. We instantiate a
private 8-way set associative cache with a 16 kB L1 instruction
cache, and a 64 kB L1 data cache with 64B cache lines. In ad-
dition, we instantiate a 16-way set associative shared L2 cache
with a size of 8MB, acting as a last-level cache (LLC). We
configure the cache access latencies using parameters derived
from recent Intel processors, i.e., the L1 cache with 5 cycles
and the L2 cache with 17-cycle latency. These parameters are
consistent with existing work on system simulation [28], [35],
[65]. The main memory of our system consists of an 8GB
2400MHz DDR4 DRAM.
Simulation Results. We use the gem5 simulator to measure
the execution time of the workloads. The baseline is measured
using an unmodified gem5 model executing the workloads
compiled with the uninstrumented musl-libc. Note that the
perlbench benchmark is excluded due to toolchain issues with
the musl-libc. Figure 3 shows the simulated relative runtime
overhead of heap memory isolation (i.e., domain isolation)

602.gcc_s

605.mcf_s

619.lbm_s

625.x264_s

638.im
agick_s

644.nab_s

657.xz_s

502.gcc_r

505.mcf_r

519.lbm_r

525.x264_r

538.im
agick_r

544.nab_r

557.xz_r

Geomean SPEC
0

5

10

15

20

25

30

35

1
0
.1

%

0
.3

%

0
.0

%

2
.0

%

2
.5

%

9
.8

%

0
.0

%

1
0
.1

%

0
.3

%

0
.0

%

2
.0

%

2
.5

%

9
.8

%

0
.0

% 3
.4

%

2
3
.2

%

0
.3

%

0
.0

%

1
.9

% 4
.5

%

1
7
.5

%

0
.0

%

2
3
.2

%

0
.3

%

0
.0

%

1
.9

% 4
.5

%

1
7
.5

%

0
.0

%

6
.4

%

A
lig

nm
en

t
O

ve
rh

ea
d

[%
]

musl-libc Our work

Fig. 5: The alignment overhead of our design for object
isolation for the SPEC CPU2017 benchmark suite.

TABLE II: Latency and area overhead of cipher candidates.

Latency‡ Cycles Area‡

Cipher ps 3GHz 4GHz 5GHz µm² GE

BIPBIP-DEC [7] 327 1 2 2 6554 33843

QARMAv1-64 (r = 5) [4] 354 2 2 2 2771 14091
QARMAv1-64 (r = 7) [4] 513 2 3 3 3863 19649

QARMAv2-64 (r = 4) [5] 305 1 2 2 2381 12110
QARMAv2-64 (r = 7) [5] 497 2 2 3 3754 19095
QARMAv2-64 (r = 9) [5] 618 2 3 4 4738 24100

‡ Numbers are taken from QARMAv2 [5] for the Nangate 15 nm process.

using cipher latencies ranging from 1 to 3 cycles. Depending
on the chosen block cipher, the cryptographic integrity checks
increase the L1 access latency by single or multiple cycles
to verify the MAC. Table II illustrates our chosen cipher
candidates and their latency overheads. We report an average
overhead of 2.5–7.4 % for heap isolation, depending on the
chosen low-latency block cipher, for SPEC CPU2017.

In addition, Figure 4 shows the simulated relative runtime
overhead of heap memory safety through single object isola-
tion (i.e., spatial and temporal safety) with a 3-cycle latency
for SPEC CPU2017. Compared to domain isolation, enforcing
memory safety with our design incurs a small additional
overhead due to alignment and quarantining. Our evaluation
shows an average overhead of 7.7 % for spatial safety and
7.6 % for spatial and temporal safety of heap objects.

B. Area and Alignment Overhead

Our design introduces an area overhead due to the block
cipher required for the MAC computation. We approximate
this overhead with a single cipher instance per CPU core.
Table II provides an overview of potential cipher candidates.
Note that additional instances might be required depending on
the cache architecture and block cipher implementation.

Our work isolates individual heap objects by aligning and
padding allocations, which creates a memory overhead. Fig-
ure 5 shows the alignment overhead of our design compared to
the musl-libc for the SPEC CPU2017 benchmark suite. Specif-
ically, sub-page granular objects are aligned to radix-sized
slots. Note that this alignment overhead is mostly negligible
compared to the overhead of larger allocations. Importantly,
for allocation larger than a page, we only need to align the
memory to the next page granularity since we can isolate pages
using different IDs.

VIII. RELATED WORK

Hardware-Assisted Bounds-Checking. Several research pro-
posals have introduced bounds-checking mechanisms, ini-
tially established using software-based approaches (e.g.,
CCured [47], Cyclone [26], or SoftBound [45]), and have now
been efficiently integrated into hardware. Hardware-assisted
mechanisms incorporate additional support for bounds checks
into the processor architecture (where the bounds metadata
is either stored inline, adjacent, or disjoint) [17], [31], [44],
[48], [51], [74], [75]. In contrast, our design achieves scalable
memory protection through cryptographic integrity checks.
Capability Architectures. Capability-based systems like the
M-Machine [14], CHEx86 [59], and CHERI [69], [70], [71]
utilize capability-based addressing to enforce the principle of
least privilege on the architectural level. CHERI leverages a
single-bit memory tag to protect capabilities in memory. More-
over, CHERI integrates capability register into the processor
architecture to enforce spatial memory safety by checking
the object’s bounds on memory interactions. In addition,
Cornucopia [19], [20] provides temporal memory safety for
CHERI heaps. However, CHERI’s 128-bit capabilities can
cause incompatibilities with legacy software. Furthermore,
CHERI extensively reshapes the processor architecture, which
can be hard to integrate into complex CPU designs. Contrarily,
we enforce least privilege to secure legacy computing systems
by only minimally increasing microarchitectural complexity.
Tagged Memory Architectures. Memory tagging [25],
[58], [66], either implemented in software or hardware,
employs a lock-and-key mechanism to enforce logical in-
tegrity checks. ISA extensions, like the ARM memory tag-
ging extension (MTE) [57] and SPARC application data
integrity (ADI) [1], [58], integrate tagged memory into the
system architecture, propagating the memory tags through the
memory hierarchy. However, ARM MTE, which uses four
tag bits per 16B, and SPARC ADI, using four tag bits per
64B, yield a high collision probability of 6.25 %, potentially
leading to undetected memory safety violations. Furthermore,
memory tagging has the disadvantage that its logical integrity
scales poorly in terms of security. An increased tag size incurs
an unmanageable high memory overhead, making larger tag
sizes impractical to implement. Moreover, conventional tagged
architectures rely on additional DRAM requests (issued by
the memory controller) to receive the tag metadata from the
main memory, increasing DRAM pressure and leading to a
non-negligible performance overhead. Unlike logical integrity,
our cryptographic integrity elegantly scales in security and
isolation granularity while only relying on PTE metadata.
Cryptographic Memory Safety. Cryptographic primitives
such as authentication and encryption are already established
for the enforcement of cryptographic pointer integrity [15],
[39] and are recently adapted for memory safety [53], [54].
Cryptographically sealed pointers [65] and CrypTag [46], for
example, enforce spatial and temporal memory safety using a
cryptographic lock-and-key approach. While cryptographically
sealed pointers detect memory safety violations using a cryp-

tographic MAC in combination with efficiently scaled memory
tagging, CrypTag [46] applies cryptographically tagged mem-
ory by leveraging a memory encryption engine to implicitly
encode the memory tags into the MAC of the authenticated
encryption. Both countermeasures rely on additional DRAM
fetches to propagate (sub-) cache line-granular metadata sim-
ilar to tagged memory (incurring comparable performance
overheads) to apply integrity protection. Cryptographic capa-
bility computing (C3) [35] partially encrypts the pointer and
uses the encrypted part, called cryptographic address (CA), as
nonce for a keystream generator. Memory accesses enforce CA
decryption followed by data encryption or decryption utilizing
the keystream. This way, C3 can either generate exceptions due
to corrupted addresses or result in access to garbled data. The
detection of memory safety errors typically requires additional
metadata for integrity checks. We achieve fine-grain memory
isolation by solely relying on PTE metadata (instead of tagged
memory) that does not increase the DRAM pressure.
Memory Protection Keys. Intel memory protection
keys (MPK) [49] implement access policies based on logical
integrity that are controlled by the user space protection key
register (PKRU). The protection keys are stored inside the
page table entries (PTEs) and checked in the MMU during
the page translation procedure, i.e., by comparing whether
the protection key matches the current policies of the PKRU
register. For instance, ERIM [67], Hodor [22], and Donky [55]
use MPK to enforce in-process domain isolation. Note that
MPK supports page-granular access policies for 16 protection
domains, which can be limiting for modern software systems
that may require thousands of separate execution contexts.

IX. CONCLUSION

In this paper, we presented cryptographic least privilege en-
forcement (CLPE), a scalable isolation mechanism enforcing
the principle of least privilege with cryptographic strength. The
ISA extension detects memory safety errors by incorporating
cryptographic integrity checks based on message authentica-
tion codes (MACs). Specifically, our design effectively scales
through cryptography, allowing the isolation of individual
objects (i.e., memory safety) and the isolation of protection do-
mains. We provide a formal model of our ISA extension, along
with a hardware model that enables functional and timing-
accurate simulation. Moreover, our mechanism only requires
lightweight architectural changes while preserving legacy code
compatibility. The simulated performance overhead of our
hardware model demonstrates the efficiency of our design,
reporting an average overhead of 2.5–7.4 % for the subset of
C programs of the SPEC CPU2017 benchmark suite.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
feedback that improved this work. This project has received
funding from the Austrian Research Promotion Agency (FFG)
via the AWARE project (FFG grant number 891092) and
the SEIZE project (FFG grant number 888087). Additional
funding was provided by a generous gift from Intel.

REFERENCES

[1] Kathirgamar Aingaran, Sumti Jairath, Georgios K. Konstadinidis, Serena
Leung, Paul Loewenstein, Curtis McAllister, Stephen Phillips, Zoran
Radovic, Ram Sivaramakrishnan, David Smentek, and Thomas Wicki.
M7: Oracle’s Next-Generation Sparc Processor. IEEE Micro, 35:36–45,
2015.

[2] Sam Ainsworth and Timothy M. Jones. MarkUs: Drop-in use-after-free
prevention for low-level languages. In S&P, 2020.

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,
Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-
naswami, and Peter Sewell. ISA Semantics for ARMv8-A, RISC-V,
and CHERI-MIPS. ACM on Programming Languages, 3:71:1–71:31,
2019.

[4] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Ma-
trices Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour
Constructions With Non-Involutory Central Rounds, and Search Heuris-
tics for Low-Latency S-Boxes. IACR Transactions on Symmetric
Cryptology, 2017:4–44, 2017.

[5] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder,
Shibam Ghosh, Marcel Nageler, and Francesco Regazzoni. The QAR-
MAv2 Family of Tweakable Block Ciphers. IACR Transactions on
Symmetric Cryptology, 2023:25–73, 2023.

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.6. Technical report, Department of Computer Science,
The University of Iowa, 2017. Available at www.SMT-LIB.org.

[7] Yanis Belkheyar, Joan Daemen, Christoph Dobraunig, Santosh Ghosh,
and Shahram Rasoolzadeh. BipBip: A Low-Latency Tweakable Block
Cipher with Small Dimensions. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023:326–368, 2023.

[8] Anton Bikineev, Michael Lippautz, and Hannes Payer. Retrofitting Tem-
poral Memory Safety on C++. https://security.googleblog.com/2022/05/
retrofitting-temporal-memory-safety-on-c.html, 2022. Accessed: 2023-
07-26.

[9] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib Bin Altaf, Nilay Vaish, Mark D. Hill, and David A.
Wood. The gem5 Simulator. SIGARCH Computer Architecture News,
39:1–7, 2011.

[10] William Blair, William K. Robertson, and Manuel Egele. ThreadLock:
Native Principal Isolation Through Memory Protection Keys. In ASI-
ACCS, 2023.

[11] Roderick Bloem, Barbara Gigerl, Marc Gourjon, Vedad Hadzic, Stefan
Mangard, and Robert Primas. Power Contracts: Provably Complete
Power Leakage Models for Processors. In CCS, 2022.

[12] Tim Boland and Paul E. Black. Juliet 1.1 C/C++ and Java Test Suite.
Computer, 45:88–90, 2012.

[13] James Bucek, Klaus-Dieter Lange, and Jóakim von Kistowski. SPEC
CPU2017: Next-Generation Compute Benchmark. In ICPE, 2018.

[14] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware
Support for Fast Capability-based Addressing. In ASPLOS, 1994.

[15] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-
Guard™: Protecting Pointers from Buffer Overflow Vulnerabilities. In
USENIX Security, 2003.

[16] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: An Efficient
SMT Solver. In TACAS, 2008.

[17] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.
HardBound: Architectural Support for Spatial Safety of the C Program-
ming Language. In ASPLOS, 2008.

[18] Ali Fakhrzadehgan, Yale N. Patt, Prashant J. Nair, and Moinuddin K.
Qureshi. SafeGuard: Reducing the Security Risk from Row-Hammer
via Low-Cost Integrity Protection. In HPCA, 2022.

[19] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff,
Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia,
Edward Tomasz Napierala, Alexander Richardson, John Baldwin,
David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey D. Son, Timothy M. Jones, Simon W. Moore,
Peter G. Neumann, and Robert N. M. Watson. Cornucopia: Temporal
Safety for CHERI Heaps. In S&P, 2020.

[20] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Jessica
Clarke, Peter Rugg, Brooks Davis, Mark Johnston, Robert M. Norton,
David Chisnall, Simon W. Moore, Peter G. Neumann, and Robert N. M.
Watson. Cornucopia Reloaded: Load Barriers for CHERI Heap Temporal
Safety. In ASPLOS, 2024.

[21] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and
Ahmad-Reza Sadeghi. IMIX: In-Process Memory Isolation EXtension.
In USENIX Security, 2018.

[22] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-
Process Isolation for High-Throughput Data Plane Libraries. In USENIX
ATC, 2019.

[23] Intel. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2A: Instruction Set Reference, A-L.
https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf,
2023. Accessed: 2023-02-26.

[24] Intel. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1. https:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf,
2023. Accessed: 2023-02-26.

[25] Samuel Jero, Nathan Burow, Bryan C. Ward, Richard Skowyra, Roger
Khazan, Howard E. Shrobe, and Hamed Okhravi. TAG: Tagged
Architecture Guide. ACM Computing Surveys, 55:124:1–124:34, 2023.

[26] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks,
James Cheney, and Yanling Wang. Cyclone: A Safe Dialect of C. In
USENIX ATC, 2002.

[27] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder,
Moritz Lipp, and Daniel Gruss. CSI:Rowhammer - Cryptographic
Security and Integrity against Rowhammer. In S&P, 2023.

[28] Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. Hardware-based Always-
On Heap Memory Safety. In MICRO, 2020.

[29] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping
Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors. In ISCA, 2014.

[30] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In S&P, 2019.

[31] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight
Jr., and André DeHon. Low-Fat Pointers: Compact Encoding and
Efficient Gate-Level Implementation of Fat Pointers for Spatial Safety
and Capability-based Security. In CCS, 2013.

[32] Lukas Lamster, Martin Unterguggenberger, David Schrammel, and Ste-
fan Mangard. HashTag: Hash-based Integrity Protection for Tagged
Architectures. In USENIX Security, 2023.

[33] Lukas Lamster, Martin Unterguggenberger, David Schrammel, and Ste-
fan Mangard. Voodoo: Memory Tagging, Authenticated Encryption, and
Error Correction through MAGIC. In USENIX Security, 2024.

[34] Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Ra-
soolzadeh. The SPEEDY Family of Block Ciphers Engineering an Ultra
Low-Latency Cipher from Gate Level for Secure Processor Architec-
tures. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021:510–545, 2021.

[35] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham,
Santosh Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin
Sultana, Karanvir Grewal, and Sreenivas Subramoney. Cryptographic
Capability Computing. In MICRO, 2021.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security, 2018.

[37] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
mussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R.
Bruce, Daniel Rodrigues Carvalho, Jerónimo Castrillón, Lizhong Chen,
Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan Fari-
borz, Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel
Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanindhito, Andreas
Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian Herrera,
Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang,
Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth,

https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso
Marinelli, Christian Menard, Andrea Mondelli, Tiago Mück, Omar Naji,
Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson,
Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov,
Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini,
Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang, Nor-
bert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F.
Zulian. The gem5 Simulator: Version 20.0+. CoRR, abs/2007.03152,
2020.

[38] Evgeny Manzhosov, Adam Hastings, Meghna Pancholi, Ryan Piersma,
Mohamed Tarek Ibn Ziad, and Simha Sethumadhavan. Revisiting
Residue Codes for Modern Memories. In MICRO, 2022.

[39] Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
CCFI: Cryptographically Enforced Control Flow Integrity. In CCS, 2015.

[40] Matt Miller. Trends, challenges, and strategic shifts in
the software vulnerability mitigation landscape. https:
//github.com/Microsoft/MSRC-Security-Research/blob/master/
presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%
20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.pdf, 2019. Accessed:
2023-02-26.

[41] MITRE. Common Weakness Enumeration. https://cwe.mitre.org/, 2006-
2023. Accessed: 2023-02-26.

[42] Prashanth Mundkur, Rishiyur S. Nikhil, Jon French, Brian Campbell,
Robert Norton-Wright, Alasdair Armstrong, Thomas Bauereiss, Shaked
Flur, Christopher Pulte, Peter Sewell, Alexander Richardson, Hesham
Almatary, Jessica Clarke, Nathaniel Wesley Filardo, Peter Rugg, and
Scott Johnson. RISC-V Sail Model, 2019. Accessed: 2023-12-05.

[43] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based Fault Injection
Attacks against Intel SGX. In S&P, 2020.

[44] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dog: Hardware for Safe and Secure Manual Memory Management and
Full Memory Safety. In ISCA, 2012.

[45] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve
Zdancewic. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In PLDI, 2009.

[46] Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge,
Marcel Medwed, and Stefan Mangard. CrypTag: Thwarting Physical
and Logical Memory Vulnerabilities using Cryptographically Colored
Memory. In ASIACCS, 2021.

[47] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-
Safe Retrofitting of Legacy Code. In POPL, 2002.

[48] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel MPX Explained: A Cross-layer Analysis of
the Intel MPX System Stack. In SIGMETRICS, 2018.

[49] Soyeon Park, Sangho Lee, and Taesoo Kim. Memory Protection Keys:
Facts, Key Extension Perspectives, and Discussions. IEEE Security &
Privacy, 21:8–15, 2023.

[50] Qualcomm. Pointer Authentication on ARMv8.3. https:
//www.qualcomm.com/content/dam/qcomm-martech/dm-assets/
documents/pointer-auth-v7.pdf, 2017. Accessed: 2023-02-26.

[51] Gururaj Saileshwar, Rick Boivie, Tong Chen, Benjamin Segal, and Alper
Buyuktosunoglu. HeapCheck: Low-cost Hardware Support for Memory
Safety. ACM Transactions on Architecture and Code Optimization,
19:10:1–10:24, 2022.

[52] Jerome H. Saltzer and Michael D. Schroeder. The Protection of
Information in Computer Systems. Proceedings of the IEEE, 63:1278–
1308, 1975.

[53] David Schrammel, Salmin Sultana, Karanvir Grewal, Michael LeMay,
David M. Durham, Martin Unterguggenberger, Pascal Nasahl, and Stefan
Mangard. MEMES: Memory Encryption-Based Memory Safety on
Commodity Hardware. In SECRYPT, 2023.

[54] David Schrammel, Martin Unterguggenberger, Lukas Lamster, Salmin
Sultana, Karanvir Grewal, Michael LeMay, David M. Durham, and
Stefan Mangard. Memory Tagging using Cryptographic Integrity on
Commodity x86 CPUs. In EuroS&P, 2024.

[55] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain
Keys - Efficient In-Process Isolation for RISC-V and x86. In USENIX
Security, 2020.

[56] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A Fast Address Sanity Checker.
In USENIX ATC, 2012.

[57] Kostya Serebryany. ARM Memory Tagging Extension and How It
Improves C/C++ Memory Safety. login Usenix Magazine, 2019.

[58] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad
Tsyrklevich, and Dmitriy Vyukov. Memory Tagging and how it improves
C/C++ memory safety. Technical report, Google Security Engineering,
2018.

[59] Rasool Sharifi and Ashish Venkat. CHEx86: Context-Sensitive Enforce-
ment of Memory Safety via Microcode-Enabled Capabilities. In ISCA,
2020.

[60] Stefan Steinegger, David Schrammel, Samuel Weiser, Pascal Nasahl, and
Stefan Mangard. SERVAS! Secure Enclaves via RISC-V Authenticryp-
tion Shield. In ESORICS, 2021.

[61] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal
War in Memory. In S&P, 2013.

[62] Gang Tan. Principles and Implementation Techniques of Software-
Based Fault Isolation. Foundations and Trends in Privacy and Secruity,
1(3):137–198, 2017.

[63] Adrian Taylor, Andrew Whalley, Dana Jansens, and Nasko Oskov. An
update on Memory Safety in Chrome. https://security.googleblog.com/
2021/09/an-update-on-memory-safety-in-chrome.html, 2021. Accessed:
2023-02-26.

[64] Martin Unterguggenberger, Lukas Lamster, David Schrammel, Martin
Schwarzl, and Stefan Mangard. TME-Box: Scalable In-Process Isolation
through Intel TME-MK Memory Encryption. In NDSS, 2025.

[65] Martin Unterguggenberger, David Schrammel, Lukas Lamster, Pascal
Nasahl, and Stefan Mangard. Cryptographically Enforced Memory
Safety. In CCS, 2023.

[66] Martin Unterguggenberger, David Schrammel, Pascal Nasahl, Robert
Schilling, Lukas Lamster, and Stefan Mangard. Multi-Tag: A Hardware-
Software Co-Design for Memory Safety based on Multi-Granular Mem-
ory Tagging. In ASIACCS, 2023.

[67] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, Efficient
In-process Isolation with Protection Keys (MPK). In USENIX Security,
2019.

[68] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient Software-Based Fault Isolation. In SOSP, 1993.

[69] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Franz A. Fuchs, Richard Grisenthwaite,
Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alexan-
der Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia.
Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (Version 9). https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-987.pdf, 2023. Accessed: 2023-10-26.

[70] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W.
Moore, Jonathan Anderson, David Chisnall, Nirav H. Dave, Brooks
Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert M. Norton,
Michael Roe, Stacey D. Son, and Munraj Vadera. CHERI: A Hybrid
Capability-System Architecture for Scalable Software Compartmental-
ization. In S&P, 2015.

[71] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert M. Norton, and Michael Roe. The CHERI capability
model: Revisiting RISC in an age of risk. In ISCA, 2014.

[72] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel Wesley
Filardo, Michael Roe, Alexander Richardson, Peter Rugg, Peter G.
Neumann, Simon W. Moore, Robert N. M. Watson, and Timothy M.
Jones. CHERIvoke: Characterising Pointer Revocation using CHERI
Capabilities for Temporal Memory Safety. In MICRO, 2019.

[73] Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming Lai,
Yan Kang, Wei Wang, and Zhe Wang. CETIS: Retrofitting Intel CET for
Generic and Efficient Intra-process Memory Isolation. In CCS, 2022.

[74] Shengjie Xu, Wei Huang, and David Lie. In-Fat Pointer: Hardware-
Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject
Granularity Protection. In ASPLOS, 2021.

[75] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Ryan
Piersma, and Simha Sethumadhavan. No-FAT: Architectural Support for
Low Overhead Memory Safety Checks. In ISCA, 2021.

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://cwe.mitre.org/
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf

	Introduction
	Background
	Memory Safety Errors
	Cryptographic Memory Protection

	Design
	Threat Model
	Design Properties
	Secure Hardware Architecture
	Cryptographic Least Privilege Policies
	Isolation of Objects and Domains

	Formal Model
	Sail Specification
	Verifying Specification Properties

	Implementation
	Hardware Model
	Memory Allocator
	Linux Kernel Patch

	Security Analysis
	Systematic Analysis
	Empirical Security Evaluation

	Evaluation
	Performance Evaluation
	Area and Alignment Overhead

	Related Work
	Conclusion
	References

