
KernelSnitch: Side-Channel Attacks
on Kernel Data Structures

Lukas Maar, Jonas Juffinger, Thomas Steinbauer, Daniel Gruss, Stefan Mangard
Graz University of Technology

{lukas.maar, jonas.juffinger, daniel.gruss, stefan.mangard}@tugraz.at,
thomas.steinbauer@student.tugraz.at

Abstract—The sharing of hardware elements, such as caches,
is known to introduce microarchitectural side-channel leakage.
One approach to eliminate this leakage is to not share hardware
elements across security domains. However, even under the
assumption of leakage-free hardware, it is unclear whether other
critical system components, like the operating system, introduce
software-caused side-channel leakage.

In this paper, we present a novel generic software side-channel
attack, KernelSnitch, targeting kernel data structures such as
hash tables and trees. These structures are commonly used to
store both kernel and user information, e.g., metadata for user-
space locks. KernelSnitch exploits that these data structures are
variable in size, ranging from an empty state to a theoretically
arbitrary amount of elements. Accessing these structures requires
a variable amount of time depending on the number of elements,
i.e., the occupancy level. This variance constitutes a timing
side channel, observable from user space by an unprivileged,
isolated attacker. While the timing differences are very low
compared to the syscall runtime, we demonstrate and evaluate
methods to amplify these timing differences reliably. In three
case studies, we show that KernelSnitch allows unprivileged and
isolated attackers to leak sensitive information from the kernel
and activities in other processes. First, we demonstrate covert
channels with transmission rates up to 580kbit/s. Second, we
perform a kernel heap pointer leak in less than 65 s by exploiting
the specific indexing that Linux is using in hash tables. Third,
we demonstrate a website fingerprinting attack, achieving an
F1 score of more than 89%, showing that activity in other user
programs can be observed using KernelSnitch. Finally, we discuss
mitigations for our hardware-agnostic attacks.

I. INTRODUCTION

The performance of modern computer systems crucially
depends on the efficiency of hardware and software. On
the hardware level, numerous optimizations, such as caching,
contribute significantly to hardware performance. Instead of
always taking the slow path to the main memory, caches
offer a shortcut by providing a local copy of the data. Inher-
ently, this introduces a timing difference. Side-channel attacks
exploit specifically such timing differences [37], allowing
an attacker to infer secret information and, e.g., covertly
transmit data [45], break Address Space Layout Randomiza-

tion (ASLR) [28], leak cryptographic keys [68], or spy on user
input [24]. Besides caches, numerous other optimizations have
been discovered to leak information through timing, e.g., con-
tention of execution ports [2] or execution unit schedulers [18],
[19]. An intuitive approach to eliminate all microarchitectural
side-channel attacks, commonly considered a last resort, is to
not share hardware elements across security domains anymore.

However, even under the assumption of leakage-free hard-
ware, the software can also introduce timing side channels
for the same reason: improving efficiency. The exploitation of
timing differences has been studied on algorithms designed
for security contexts, e.g., in weak cryptographic implemen-
tations [48], as well as on algorithms that were not primarily
designed for security contexts but used in them [6], [21],
[33], [53], [55]. Timing differences can also be introduced
generically at the system level: For instance, the software also
has different types of caches that leak information [16], [22],
[63], in-kernel allocators or synchronization primitives [41],
[43], [56], interrupts [15], [59] or variation in the instruction
or memory access sequence [62], [68]. Although the concept
of constant-time code [37] is well-understood, its general-
purpose application is impractical [54]. In particular, leakage
introduced on the operating system level [22], [41], [43], [56],
[59] is critical, as this leakage is not visible in the user-level
source code and is not mitigated by constant-time code in the
user application. Hence, it is unclear whether, despite leakage-
free hardware and hardened security-critical algorithms, other
critical system components, like the operating system, intro-
duce generic software-observable side-channel leakage.

Recent research highlights leakage from system compo-
nents: Gruss et al. [22] showed that the operating system page
cache can be exploited like hardware caches. Patel et al. [49]
demonstrated a performance-degrading attack exploiting intra-
kernel resource contention. Lee et al. [41] and Maar et al. [43]
presented timing side channels in the Linux slab allocator to
infer when a new slab is created. Shen et al. [56] presented
a covert channel based on mutual exclusion primitives. These
works motivate further research on side channels introduced
by the operating system architecture to understand whether
more security- and privacy-critical attacks are possible.

In this paper, we present a novel generic side-channel attack,
KernelSnitch, that targets data container structures inside the
kernel. We present attacks on four types of data structures in
the kernel: fixed-size hash tables, dynamically resizable hash

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240223
www.ndss-symposium.org

tables, radix trees, and red-black trees, all commonly used data
structures in the Linux kernel. KernelSnitch exploits that these
data structures have a variable size, ranging from an empty
state to a theoretically arbitrary amount of elements. Accessing
these data structures requires operations that depend on the
amount of elements in the data structure, i.e., the occupancy
level. This variance in the operations, which depends on
the occupancy level, constitutes a timing side channel an
unprivileged user can observe to leak information about other
processes or privileged information from the kernel.

One challenge for KernelSnitch is amplification: Timing
differences between occupancy levels of the victim workload
can be very low, e.g., 8 additional instructions. Compared to
the syscall overhead, distinguishing the timing of these extra
instructions is challenging. We demonstrate two approaches
to address this challenge by increasing the timing difference
and, thereby, amplifying the leakage: First, we degrade the
performance of the system with memory thrashing. Second,
we manipulate the data structures with additional elements. We
evaluate the KernelSnitch’s leakage to distinguish occupancy
levels with and without amplification and with different noise
floors. We mainly evaluate on an Intel i7-1260P, with other
processors and another architecture yielding similar results
for the same evaluation programs, demonstrating hardware
independence. We show that we can distinguish the occupancy
level with an accuracy of better than 99.9% on an idle system
and better than 98.5% on a noisy system up to 3/4 full load.

We evaluate KernelSnitch in three case studies, showing that
KernelSnitch can leak sensitive information from the kernel
and activity in other user processes. Our evaluation works
from unprivileged, isolated processes on the same system,
e.g., within a sandbox. In our first case study, we measure
the capacity of the side channel in a covert-channel scenario,
achieving a true capacity of 580 kbit/s at an error rate of 2.8%.
In our second case study, we exploit the specific indexing of
Linux for hash tables. To randomize the indices, the kernel
generates the index by combining user-controlled information
and kernel-controlled secret information. Using KernelSnitch,
an attacker can infer the secret information that the kernel
uses as input. This allows us to leak the locations of targeted
kernel objects (i.e., mm_struct and msg_msg) in less than
65 s. We refer to this as a kernel heap pointer leak. While
prior side-channel research [9], [23], [28], [29], [36] leaked
Kernel ASLR (KASLR), e.g., the start of the text section or
physical mapping, we are the first to perform a kernel heap
pointer leak using a side channel1. In our third case study, we
show the activity leakage of other user programs, e.g., Firefox.
In particular, we perform a website fingerprinting attack on the
Ahrefs Top 100 [1], achieving an F1 score of 89.5%.

Finally, we discuss defenses against the hardware-agnostic
KernelSnitch attack. We identify challenges for efficient miti-
gation, such as the theoretically unbounded worst-case execu-
tion time and eliminating constant time as a viable solution.

1As Linus Torvalds and Kees Cook noted during our disclosure, KASLR
is broken against local attackers, but leaking kernel heap pointers is not.

Contributions. The main contributions of our work are:
1) Identification of Critical Timing Side Channels in

the Kernel: We analyze the security properties of kernel
data container structures, presenting a new side channel,
KernelSnitch, exploiting the kernel’s internal architecture
to leak sensitive information to unprivileged users.

2) Leakage Amplification and Evaluation: We demon-
strate information leakage amplification approaches and
evaluate the leakage for multiple data container structures.

3) Side-Channel Attacks: We demonstrate three attack
case studies: A covert channel with up to 580 kbit/s, a
kernel heap pointer leak in less than 65 s, and a website
fingerprinting attack with an F1 score of more than 89%.

Hash Table:
0: empty

1: empty

2: empty

3: empty

4: empty

5: empty

6: empty

7: empty

2: mem[obj0]

4: mem[obj3]

5: mem[obj4]
obj4

nextkey4

obj5

nextkey5

obj0

nextkey0

obj1

nextkey1

obj2

nextkey2

obj3

nextkey3 Hash bucket
Object
Next pointer
Key

Fig. 1: Visual representation of a Linux kernel’s hash table.

key:
0x000x3d0x00

root:

...

...

...

next pointer
index

... tree node
accessed object
object

Fig. 2: Visual representation of a three-level radix tree, with
key referencing this tree to index the hatched object.

root: 12

9 18

4 10 14 21

7 13 17

NULL NULL NULL NULL NULL

NULL NULL NULL NULL NULL NULL

black tree node
red tree node
leaf node pointer

Fig. 3: Visual representation of a red-black tree, which stores
items with an increasing order.

Disclosure. We have disclosed our KernelSnitch attack to
the Linux kernel security team.

Opensource. We provide open-source implementations of
our timing side-channel attack, which leaks the occupancy
level of data structures discussed in the paper. The code is
available at https://doi.org/10.5281/zenodo.14249716.

Outline. Section II provides background information. Sec-
tion III presents an overview of KernelSnitch. Section IV
presents a root cause analysis. Section V details how we
amplify the leakage. Section VI presents three attack case

2

https://doi.org/10.5281/zenodo.14249716

User space
Process 1 Process 2

Kernel space

access

Data
container
structure

(a) Process 1 accesses (fast) a kernel data
container structure via the syscall interface.

User space
Process 1 Process 2

Kernel space

append

Data
container
structure

(b) Process 2 appends data to the data con-
tainer structure via the syscall interface.

User space
Process 1 Process 2

Kernel space

access

Data
container
structure

(c) Processes 1 re-accesses the data container
structure which is now slower.

Fig. 4: High-level of exploiting a kernel data container structure for a side channel.

studies. Section VII discusses related work, and Section VIII
discusses mitigations. Section IX concludes our work.

II. BACKGROUND

In this section, we provide background on Linux kernel data
container structures, including hash tables and trees.

A. Container Structures in the Linux Kernel

The C language used in Linux has no container structures
like C++ (e.g., vector). Hence, several containers are explic-
itly written for Linux and optimized for their use in the kernel.

Double-Linked Lists. Linux provides a generic double-
linked list, i.e., list_head, which is extensively used through-
out the kernel. The list_head struct consists of next and
prev pointers and is commonly used to organize lists, e.g., for
the mm_struct or task_struct lists. Insertion and deletion
work by re-linking pointers correspondingly, with a constant
runtime. In the worst case, an object lookup requires iterating
through the entire list, with a runtime linear in length.

Hash Tables. In the Linux kernel, hash tables use a hash
function to compute the index in an array of buckets. In
each bucket, objects are typically stored in a linked list (see
Figure 1). To access the object with key key1, the kernel
computes its hash value to determine the hash bucket, resulting
in bucket 2. It then iterates through the linked list within bucket
2, comparing the keys of stored objects until it finds a match
with the key from obj1. While all hash tables in the Linux
kernel use this approach to access objects by their keys, there
are variations between fixed-size and dynamically resizable
hash tables: Fixed-size hash tables have an array with a
predetermined number of buckets, e.g., the plist_head object
for the buckets, using list_head internally. Dynamically
resizable hash tables, e.g., rhashtable, adjust their bucket
sizes based on the occupancy level of the buckets.

Trees. Linux supports multiple trees, including two widely-
used ones, i.e., radix tree [11] and red-black tree [12].

The radix tree associates a pointer value with an integer
key, offering efficient memory usage and quick lookups [11].
Figure 2 illustrates a three-level radix tree example. In general,
each tree node contains multiple slots (typically 6 bit), each
pointing to NULL, a child tree node, or a stored object. These
slots are indexed by parts of the integer key. During a key
lookup, the kernel uses the most significant bit block to find the

corresponding slot in the root node, followed by subsequent bit
blocks for lower-level tree nodes. In the example of Figure 2,
with the key having three bit blocks, a single tree lookup uses
the most significant bit block (i.e., 0x00) for the third level
(i.e., root node), the middle bit block (i.e., 0x3d) for the second
level, and the least significant bit block (i.e., 0x00) for the first
level, referencing the accessed object pointer.

The red-black tree is a variant of a semi-balanced binary
tree. Each tree node contains a value and up to two references
to child nodes. All child nodes on the left branch are smaller,
while all child nodes on the right branch are greater than
the current tree node. Hence, nodes are ordered from lowest
to highest (see Figure 3 with values 4 to 21). Each tree
node is colored either red or black, with the root node being
black. Insertion and deletion operations involve re-coloring
tree nodes to ensure an approximation of the tree balance [12].
Consequently, due to this re-balancing, the red-black tree has
a logarithmic worst-case execution time for lookups [12].

III. HIGH-LEVEL OVERVIEW

This section provides an overview of KernelSnitch, a timing
attack on kernel container structures to leak sensitive informa-
tion. At its core, KernelSnitch observes the occupancy level of
data container structures in the kernel and deduces sensitive
information from it through the following process, as shown
in Figure 4: KernelSnitch measures the timing of accesses to
data container structures shared between processes (see Fig-
ure 4a), by timing the syscall that accesses the kernel structure.
Depending on the occupancy level, the timing of this access
syscall varies. KernelSnitch then deduces the occupancy level
from the obtained timing. The measured timing of accessing
the data structure by process 1 indicates a fast operation, let-
ting KernelSnitch infer a low occupancy (see Figure 4a). The
occupancy level increases when additional data is appended to
the structure (see Figure 4b). For example, appending data to
a list increases its size, requiring additional iterations to access
all elements. When KernelSnitch re-accesses the structure via
a syscall, e.g., iterates through the entire list, it observes a
slower syscall timing than on the initial access (see Figure 4c).

We perform three case study attacks by setting and ob-
serving the data structure occupancy level. First, we perform
a covert channel attack by controlling two processes, such
as processes 1 and 2 from Figure 4. One process sets the

3

sys_futex_wake(uaddr):
mm = current.mm
h = futex_hash(uaddr, mm)
hbucket = futex_hash_tables[h]
for fqueue in hbucket:
if fqueue.mm == mm and

fqueue.uaddr == uaddr:
fqueue.wake()

sys_futex_wait(uaddr):
mm = current.mm
fqueue = futex_q(uaddr, mm)
h = futex_hash(uaddr, mm)
hbucket = futex_hash_tables[h]
hbucket.append(fqueue)
fqueue.wait()❶

f
u
t
e
x
_
h
a
s
h
_
t
a
b
l
e
[
]
: 0: empty

1: empty

2: empty

3: empty

4: empty

5: empty

6: empty

7: empty

2:mem[fqueueA]

5:mem[fqueueB]

fqueueA

nextuaddrA,mmA

fqueueB

nextuaddrB,mmB

// uaddrY -> futex_hash_table[0]
sys_futex_wake(uaddrY)

// uaddrZ -> futex_hash_table[2]
sys_futex_wake(uaddrZ) ❷

f
u
t
e
x
_
h
a
s
h
_
t
a
b
l
e
[
]
: 0: empty

1: empty

2: empty

3: empty

4: empty

5: empty

6: empty

7: empty

2:mem[fqueueA]

5:mem[fqueueB]

fqueueA

nextuaddrA,mmA

fqueueC

nextuaddrC,mmC

fqueueB

nextuaddrB,mmB

// append new futex to futex_hash_table[2]
sys_futex_wait(uaddrC)

// uaddrZ -> futex_hash_table[2]
sys_futex_wake(uaddrZ)

Fig. 5: Representation of futex_hash_table as a fixed-size array of hash bucket, each containing a linked list of futex queues
(i.e., fqueue). Initially ❶, buckets 2/5 store queues fqueueA/B. Accessing bucket 0 with uaddrY is fast, while accessing bucket
2 with uaddrZ is moderate. After adding fqueueC ❷ to bucket 2, accessing this bucket with uaddrZ becomes slow.

occupancy level of a data structure to either low or high, while
the other process measures its occupancy level. Second, using
hash tables as data structures that use kernel heap addresses
as part of the keys, KernelSnitch deduces hash collisions from
setting and observing the occupancy level of hash buckets.
This allows us to reconstruct kernel heap addresses from user
space, i.e., leaking kernel heap pointers. Third, if an attacker
controls process 1 while process 2 is a victim, KernelSnitch
can deduce the activity of the victim, e.g., Firefox, from the
occupancy level of data container structures. This activity
deduction allows us to perform a website fingerprinting attack.

Several technical challenges have to be addressed to perform
these three attacks. The following briefly describes these
challenges, while subsequent sections discuss our solutions.

Occupancy Level Leakage of Data Structures. We
measure the timing of syscalls that access kernel data container
structures. While this timing depends on the occupancy level
of these structures, we need to study this dependency in close
detail, taking the numerous operations performed as part of
a syscall into account. In Section IV, we address this and
successfully determine the occupancy level for various data
structures via timing measurements. We demonstrate the side
channel in particular on fixed-size hash tables, dynamically
resizable hash tables, radix trees, and red-black trees.

Amplification of the Information Leakage. Distinguish-
ing lower and higher-level occupancy from user space is
challenging. In some cases, the difference is only a few
additional executed instructions, which we require to distin-
guish from user space. To overcome this, we demonstrate
information leakage amplification methods in Section V. These
methods are classified as structure-agnostic and hardware-
agnostic. We demonstrate that with these methods, we can
reliably distinguish the occupancy level of data structures in
idle and noisy systems. We also demonstrate that occupancy
leakage and amplification are independent of the structures’
allocation addresses and are consistent between reboots.

Attack Specifics. We perform three case studies of Kernel-
Snitch attacks: covert channel, kernel heap pointer leak, and
website fingerprinting, each of which has its sub-challenges.

For instance, the covert channel relies on identifying a channel
of the structure for communication. Consider a hash table, this
involves identifying a shared bucket known to both processes.
In Section VI, we detail solutions for overcoming these sub-
challenges and show how we leverage occupancy-level leakage
to execute each attack. We demonstrate a covert channel with
up to 580 kbit/s, a kernel heap pointer leak in less than 65 s,
and website fingerprinting with an F1 of score more than 89%.

IV. ROOT CAUSE ANALYSIS

We analyze the security properties of data container struc-
tures, revealing a novel timing side channel, KernelSnitch,
in the kernel that leaks sensitive information to unprivileged
and isolated users. We showcase leakage from fixed-size hash
tables (i.e., hlist_head[] and plist_head[]), a dynam-
ically resizable hash table (i.e., rhashtable), a radix tree
(i.e., radix_tree_root), and a red-black tree (i.e., rb_root).
KernelSnitch deduces the occupancy level by measuring the
timing of syscalls that access these structures from user space.

A. Leaking Occupancy Levels of Hash Tables

Hash tables in Linux consist of an array of key-indexed
buckets, each containing a linked list of objects (see Sec-
tion II-A). When performing a hash table lookup, the kernel
computes the bucket index by applying a hash function to
the key. It then iterates through the linked list to find the
corresponding object. As this iteration through the linked list
takes time, it leaks the occupancy level of the iterated hash
bucket through the required access timing. While this approach
is generically applicable, we describe the occupancy leakage
using the futex_hash_table (or __futex_data.queues)
as an illustrative example (see Figure 5).

Futex Hash Table. Linux supports futexes [34] as fast
user-space locking mechanisms, which mainly operates in user
space and invokes syscalls for sleeping and waking otherwise.
We exploit sys_futex_wait/wake as primitives to probe and
alter the occupancy level of hash buckets within futex_-

hash_table. The wait operation (i.e., futex syscall with
FUTEX_WAIT_PRIVATE), or sys_futex_wait in Figure 5, is a
syscall, during which a local futex queue object (i.e., futex_q)

4

❶ ❷ ❸ sys_msgstat(key):
ipc_ns = current.ipc_ns
ipc_ids = ipc_ns.get_ids()
rt = ipc_ids.idr.root_rt
ipcp = rt.lookup(key)
msgq = ipcp.get_msgq()
if IS_ERR(msgq):
return ERROR

return msgq.get_stat()

sys_msgcreate(key):
ipc_ns = current.ipc_ns
ipc_ids = ipc_ns.get_ids()
rt = ipc_ids.idr.root_rt
msgq = msg_queue(key)
rt.append(msgq.ipcp)
return msgq.ipcp.id

root_rt:

...

probe_key:

0x000x3f

valid_key:

0x01

invalid
reference

ipcp2 ipcp1

// valid_key = 0x1
sys_msgstat(valid_key)

// probe_key = 0x3f00
sys_msgstat(probe_key)

... ...

root_rt:

...
inserted
node

inserted node

append_key:

0x000x3e

ipcp3 ipcp2 ipcp1

// append_key = 0x3e00
// inserts addition node level
// inserts second child node
sys_msgcreate(append_key)

... ...

root_rt:

...

probe_key:

0x000x3f

invalid
reference

valid_key:

0x010x00

ipcp3 ipcp2 ipcp1

// valid_key = 0x1
sys_msgstat(valid_key)

// probe_key = 0x3f00
sys_msgstat(probe_key)

next pointer

index

ipcp object
... tree node

Fig. 6: The representation of ipc_ids.ipcs_idr.root_rt initially consists of a one-level radix tree ❶. Probing valid_key

with sys_msgstat results in a moderate access time due to a single node lookup, while probing probe_key results in a fast
response due to no lookup. When adding append_key with sys_msgcreate ❷, the kernel inserts a second node level. Now,
when probing with probe_key and valid_key ❸, an additional lookup is required, leading in increased access times.

is created and placed in the futex hash table (i.e., futex_-
hash_table). Storing in the hash table involves computing
the hash using futex_hash with the current mm_struct’s
kernel address and user-space address uaddr, which holds the
user-space address of its futex structure.

We use the wait operation to increase the occupancy level of
specific hash buckets in the futex hash table. In particular, we
create a thread that subsequently executes sys_futex_wait,
increasing the occupancy level. There are two ways to fill hash
buckets. First, using the same uaddr within the same process
(same mm_struct), KernelSnitch increases the occupancy of
the same hash bucket. Second, using a different uaddr or
a different process, KernelSnitch increases the occupancy of
(most likely) different hash buckets. We use the wake opera-
tion with a mismatched identifier to probe the occupancy level
of hash buckets. This syscall, simplified as sys_futex_wake

in Figure 5, first computes the hash of the current mm_struct
and the input uaddr. It then iterates through all futex queues
linked to the corresponding hash bucket. Since we provide an
uaddr that does not match any futex queue, the kernel iterates
through the entire list, leaking the occupancy level of the hash
bucket with the hash index futex_hash(uaddr, mm) through
the wake syscall’s execution time. To remove a futex queue
from the futex_hash_table, we perform the wake operation
on the sleeping thread.

The manipulation and observation of occupancy levels are
detailed in Figure 5. The initial futex_hash_table ❶ con-
tains fqueueA/B for hash buckets 2 and 5, respectively. We
perform sys_futex_wake with a mismatched address (i.e.,
uaddrY), which, in combination with the current mm_struct,
maps to bucket 0. Thus, KernelSnitch observes a fast time
measurement corresponding to a low occupancy level. Sim-
ilarly, repeating this process with the mismatched uaddrZ

address associated with bucket 2 reveals a moderate occupancy
level, indicating the presence of a single queue element.
Furthermore, the execution of sys_futex_wait ❷ with the

address uaddrC associated with bucket 2 allows KernelSnitch
to increase the occupancy level of bucket 2. Consequently,
performing sys_futex_wake with the mismatched address
uaddrZ, corresponding to bucket 2, will have an even slower
access time, leaking an increase in its occupancy level.

Vulnerable Hash Tables. We extend our analysis, show-
ing that KernelSnitch is a generic attack, also leaking from
other hash table implementations. These include hlist_-

head[] (i.e., posix_timers_hashtable) and rhashtable

(i.e., ipc_ids.key_ht), which consist of fixed-size hash
buckets and dynamically resizable hash tables, respectively.

The posix_timers_hashtable serves as a hash table to
store POSIX interval timers, i.e., k_itimer. Linux has vari-
ous timer-related syscalls, including sys_timer_create and
sys_clock_gettime (see Listings 3 and 4 in Appendix A),
designed for creating timers and retrieving timer information.
We demonstrate that these syscalls can be exploited to alter
and probe the occupancy level of hash buckets within the
timer hash table, which is similar to the futex hash table.
In this implementation, the hash value is computed using
timer_hash with the current signal_struct’s kernel ad-
dress and the unique timer identifier id. Based on this hash
value, these syscalls access the corresponding hash bucket,
adding a new timer or iterating through existing timers to
retrieve information about the matching timer. To remove a
timer from the hash table, a close syscall can be performed.

The ipc_ids.key_ht is a dynamically resizable hash table
which stores kern_ipc_perm (short ipcp) objects that con-
tain metadata used for user-space Inter-Process Communica-
tion (IPC). Specifically, ipcp objects are inherited by objects
such as the msg_queue struct, which are intended for msg

communication. The same applies to other IPC mechanisms,
such as shm and sem. Linux provides syscalls for interacting
with these parent objects, e.g., sys_msgcreate/msgget for
the msg IPC mechanism (see Listings 5 and 6). KernelSnitch
similarly exploits these syscalls as with the previous instances.

5

❶ ❷ ❸ sys_timerfd_create():
timer = hrtimer()
file = anon_inode()
file.priv = timer
fd = fd_install(file)
return fd

sys_timerfd_settime(fd, time):
timer = timerfd_fget(fd)
base = this_cpu_ptr(&hrtimer_bases)
if timer in base.clock_base.active:
remove_hrtimer(timer, base)

timer.settime(time)
enqueue_hrtimer(timer, base)

root: 12

9 18

10

// create two hrtimers
fd0 = sys_timerfd_create()
fd1 = sys_timerfd_create()

root: 12

9 18

10 1000

// inserts fd0 to rb tree
sys_timerfd_settime(fd0, 1000)

root: 12

9 18

10 1000

1001
// inserts fd1 to rb tree
sys_timerfd_settime(fd1, 1001)

Fig. 7: hrtimer_bases.clock_base.active includes four timers arranged by time values ❶, ranging from 9 to 18. When
the new timer identified by fd0 is enqueued to the tree ❷, the insertion process takes moderate time since it involves accessing
two tree nodes. However, when the fd1 timer is enqueued ❸, insertion time increases as it now requires accessing three nodes.

B. Leaking Occupancy Levels of Trees

This section demonstrates that trees are also vulnerable.
Radix Tree. This tree associates a pointer value with

an integer key [11]. Each tree node contains multiple slots
(typically 6 bit in size) pointing to NULL, child nodes, or stored
objects. These slots are indexed by bit blocks of the key.
During a key lookup, the kernel uses the most significant index
to locate the corresponding slot in the root node, followed
by subsequent indexes for lower-level nodes. The timing of a
lookup depends on the tree’s level, allowing for the leakage
of its internal occupancy level through timing measurements.

One instance is the ipc_ids.ipcs_idr.root_rt radix
tree, storing ipcp objects identified by unique key identifiers.
Linux provides various syscalls to interact with this tree,
such as sys_msgcreate/msgstat, used for appending ipcp

objects to the tree or obtaining information from its parent
object msg_queue. Similar to our approach with hash tables,
we exploit these syscalls to alter and leak the occupancy level
of the radix tree. The scenario depicted in Figure 6 illustrates
how KernelSnitch exploits the ipc_ids.ipcs_idr.root_rt

to leak its occupancy level. The radix tree initially consists
of one level ❶, with the tree node having 64 slots. In the
lookup of valid_key within sys_msgstat, the kernel uses
the least significant 6 bits to access the 0x1 slot of the root
node, retrieving the ipcp1 object. Since only one tree node is
accessed during this lookup, the syscall runtime is moderate.
By performing sys_msgstat(probe_key), the kernel does
not access any tree node as the second 6-bit index 0x3f

requires a second tree level which is not present. Thus, the
access time is fast as no tree node is accessed. When adding
append_key with sys_msgcreate ❷, the kernel inserts a
second level and another first-level node, replacing the root
node with the newly inserted second level. When re-accessing
the radix tree with valid_key and probe_key using sys_-

msgstat ❸, their lookup and, consequently, execution time
change. For valid_key, the kernel first fetches the 0x00 slot
from the new root node, followed by fetching the 0x01 slot.
Since a lookup for valid_key now accesses two tree nodes,
the runtime is increased. For probe_key, the kernel initially
fetches the 0x3f slot similarly the previous lookup. However,
since this slot contains no valid next child node, the lookup

yields an invalid reference. The lookup time, now accessing
one node, increases compared to no node access.

Red-Black Tree. Linux uses red-black trees as key-
sorted data structures [12], e.g., hrtimer_bases.clock_-

base.active which manages active high-resolution timers,
sorting timer events by how close they are to their firing time.

Linux supports syscalls to interact with high-resolution
timers, two of which are: sys_timerfd_create to create a
timer and sys_timerfd_settime to activate it. Upon activa-
tion, the timer is enqueued to the hrtimer_bases.clock_-

base.active red-black tree. Considering the scenario in
Figure 7, initially, the tree ❶ includes 4 timers sorted by
time values ranging from 9 to 18. By calling sys_timerfd_-

create, the kernel creates two timers identified as fd0/1,
which are not yet enqueued to the tree. Upon activating the
timer identified with fd0 using sys_timerfd_settime ❷,
the corresponding hrtimer is inserted at the tail of the tree
since its value is 1000 larger than 18. This insertion requires
two tree node accesses, resulting in a moderate enqueue
time and indicating a moderate occupancy level. Activating
fd1 using sys_timerfd_settime ❸ involves three node
accesses, resulting in higher execution time and suggesting a
higher occupancy level compared to the previous enqueuing.
Although enqueuing fd1 triggers a tree rebalancing, this does
not impact the structure’s exploitability (see Section V-B).

V. AMPLIFICATION AND EVALUATION

KernelSnitch distinguishes lower and higher-level occu-
pancy from user space. For instance, for the POSIX timer
hash table, KernelSnitch needs to distinguish as few as 8
extra instructions executed based on time measurements from
user space. We demonstrate in Section V-A how to amplify
the information leakage in KernelSnitch attacks to a degree
where these few extra instructions can be distinguished. We
then evaluate the leakage without and with our amplification
methods in Section V-B, as well as with different noise floors.

A. Leakage Amplification

The amplification methods make the difference in occu-
pancy of data container structures between lower and upper
levels distinguishable from user space. We categorize these
methods into structure-agnostic and hardware-agnostic.

6

Structure-Agnostic Amplification. Our structure-agnostic
amplification mechanism extends the execution time of the in-
structions executed for each additional element. For example,
the hash table posix_timers_hashtable iterates over the
linked list of a hash bucket (see Listing 4 in Appendix A).
For each iteration, 8 additional instructions are executed (see
Listings 1 and 2). They are two memory loads, three compares,
and three jumps. Flushing targets of memory loads is a known
technique [3], [24], [51], exploiting that cache hits are faster
than misses [68]. As we cannot use Flush+Reload due to the
lack of shared memory, we use cache eviction from user space.
Since we do not assume to know the allocation addresses of the
container structures nor any low-level information about the
hardware caches, our eviction set consists of an array equal or
larger to the Last Level Cache (LLC). Eviction is performed by
accessing the entire array, essentially thrashing the LLC. This
approach ensures that the targeted memory loads cause cache
misses, thereby increasing the timing difference between low
and high occupancy. This amplification is agnostic to specific
container structures and can be applied to any structures.

Hardware-Agnostic Amplification. We can also mod-
ify the state of the data container structure to increase the
access time to a particular hash bucket by appending addi-
tional elements. For example, for the futex_hash_table,
instead of appending one futex queue object to a specific
hash bucket, we append multiple futex queues. We do this
via the sys_futex_wait syscall, using the same user-space
address uaddr within the same process, and, therefore, the
same mm_struct. Since both the uaddr and mm are iden-
tical, their hash value h0 = futex_hash(uaddr,mm) also
matches. Consequently, these futex queues are appended to
the same hash bucket’s linked list. Next, we invoke the probe
syscall sys_futex_wake with a different user-space futex
address uaddr’ but the same mm. The syscall iterates through
the futex queues within the hash bucket matching hash h1 =

futex_hash(uaddr’,mm). If h0 and h1 match, the measured
time becomes a function of the futex queues appended in the
first stage. With more objects in the linked list of the hash
bucket, the lookup time increases, significantly improving the
detection of hash collisions. This generic approach works for
all data containers that can contain linked data structures, i.e.,
other hash tables and the red-black tree.

For the radix tree, the amplification process works differ-
ently. Considering ipc_ids.ipcs_idr.root_rt, we aim to
maximize the timing difference of the sys_msgstat syscall
between scenario ❶ and ❸ in Figure 6. To achieve this, we
append a specific ipcp object to the radix tree, introducing a
new tree level. This operation is exemplified by the sys_ms-

gcreate(append_key) action in scenario ❷, while we use
sys_msgstat with probe_key to probe the internal state of
the tree. However, to insert the new tree level, we need to
occupy all slots in the first tree level beforehand. Hence, we
initially append 64 ipcp objects. With the first level occupied,
we alternate between insertion and removal of append_key to
append or remove the second tree node, respectively. Hence,
we obtain a notable timing difference between scenario ❶ and

160 165 170 175 180 185 190 195
0

200

400

600

W
/o

st
ru

ct
-

ag
no

st
ic

am
p

0 timers 1 timer
2 timers 3 timers
4 timers 5 timers

180 190 200 210 220
0

200
400
600
800

Access time [timestamps]

W
st

ru
ct

-
ag

no
st

ic
am

p

Fig. 8: Information leakage of posix_timers_hashtable

with and without amplification. We can see that the timings
spread over a wider range with the amplification.

❸, i.e., the insertion or removal of just one key.

B. Evaluation

We evaluate the KernelSnitch leakage with and without am-
plification and its noise resilience on each container structure.
We then show the hardware independence of our evaluation by
running it on 4 different systems with the same source code.
Crucially, the results do not depend on the allocation addresses
of the structures and remain consistent between reboots.

We developed a helper kernel module to obtain the ground
truth, e.g., the occupancy of a specific hash bucket. We then
fill the data container with objects, modifying its occupancy
level. We measure time using rdtsc before and after the
syscall, storing the difference between these two timestamps.
Using ground truth and KernelSnitch-deduced occupancies, we
determine the False-Positive Rate (FPR) and False-Negative
Rate (FNR). We run the evaluation with and without our
amplifications for comparison (see Table I). For consistent
timing results, we filter outliers and focus on the ones not
influenced by noise. Noise can only increase the timing and,
hence, we average the lowest 8 values over 512 measurements.
We evaluate on an Intel i7-1260P, with an Ubuntu 22.04.4 and
kernel v6.5. We obtain similar results on 3 other processors
with the same evaluation code (see Table I); one even runs with
kernel v5.15. We also evaluated on AArch64 (i.e., Raspberry
Pi 4) with the same code except for using clock_gettime

instead of rdtsc, showing similar results.
All operations performed, including syscalls and instruc-

tions, are available to unprivileged users and require no extra
capabilities. Our side channel also does not rely on CPU
frequency pining, as it is a privileged operation. In fact, as we
show in our stress evaluation, the most dominant noise factor
is the frequency fluctuation as we do not pin the frequency.

POSIX Timer Hash Tables. We populate the posix_-

timers_hashtable with 4096 timers using sys_timer_-

create to increase the occupancy of one randomly selected
hash bucket out of 512. After appending each timer, we mea-
sure the time of the sys_clock_gettime syscall with a ran-
domly selected, invalid id. We then compare the KernelSnitch-

7

220 230 240 250 260 270
0

500

1,000
W

/o
st

ru
ct

-
ag

no
st

ic
am

p
0 fqueues 1 fqueue

2 fqueues 3 fqueues

230 240 250 260
0

500
1,000
1,500

Access time [timestamps]

W
st

ru
ct

-
ag

no
st

ic
am

p

Fig. 9: Information leakage of futex_hash_table.

deduced occupancy of specific hash buckets with the ground
truth. The measured timing is shown in Figure 8 without
(distinguishing 1 and 0 timers, i.e., 1 to 0) and with (i.e., 3 to
0) hardware-agnostic amplification as well as without and with
our structure-agnostic amplification (i.e., cache flushing). We
compute the FPR and FNR using a threshold value between
the medians of both histograms, e.g., 164 to distinguish 1
and 0 timers. We obtain 1.8% (FPR) and 10.0% (FNR) for
distinguishing 1 and 0 timers. For distinguishing 3 and 0
timers, we obtain 0% (FPR) and 9.4% (FNR), showing the ef-
ficacy of the hardware-agnostic amplification. With structure-
agnostic amplification, the FPR and FNR decrease to 0%. The
elimination of FNR and FPR yields an accuracy of 100%.

Futex Hash Tables. We conduct a similar evaluation
with futex_hash_table, using sys_futex_wait to append
8192 futex queue objects to the hash table, which consists
of 4096 hash buckets on our default system2. The access
timing was measured using sys_futex_wake. The evaluation
results are illustrated in Figure 9. In contrast to the POSIX
timer hash table results, the distinction between no elements
within the hash buckets and one is more significant, while
distinguishing multiple elements becomes less significant. One
possible reason for this disparity lies in the differences in the
lookup loop and the object’s structure, i.e., futex_hash_ta-
ble exhibits an early exit on lookup if no element is present.
This characteristic renders the time difference between no
elements and any element significant, shown in both with and
without structure-agnostic amplification. When distinguishing
between multiple elements, we suspect only one cache miss
occurs in each iteration, where with k_itimer two misses
occur. This results in a less significant timing difference for
multiple elements.

IPC Hash Tables. For the ipc_ids.key_ht, we exploit
sys_timer_create to populate data objects into pseudo-
random hash buckets. We then exploit sys_clock_gettime
to probe pseudo-randomly selected buckets. In total, we
populate 4096 objects, probing the hash buckets after each
insertion, and obtained the ground truth using our helper
module. Figure 10 illustrates the results of this evaluation,
with Table I summarizing the FPR and FNR, along with the

2Its size is computed as 256 · nr_cores, where our system has 16 cores.

185 190 195 200 205 210 215 220
0

500
1,000
1,500

W
/o

st
ru

ct
-

ag
no

st
ic

am
p

0 ipcps 1 ipcp

2 ipcps 3 ipcps

230 235 240 245 250 255 260 265
0

500
1,000
1,500

Access time [timestamps]

W
st

ru
ct

-
ag

no
st

ic
am

p

Fig. 10: Information leakage of ipc_ids.key_ht.

200 205 210 215
0

100

200

300

Access time [timestamps]

W
/o

st
ru

ct
-

ag
no

st
ic

am
p

220 240 260
0

100

200

Access time [timestamps]

W
st

ru
ct

-
ag

no
st

ic
am

p

Fig. 11: ipc_ids.ipcs_idr.root_rt information leakage.

improvements achieved in both leakage amplifications. Both
figures show that this hash table primarily comprises hash
buckets with low occupancy levels. This characteristic stems
from the hash table’s dynamically resizable property. If the
occupancy level of multiple buckets becomes too high, the
hash table automatically resizes its bucket array and restruc-
tures objects within the buckets. Importantly, as demonstrated
in Section VI, although this dynamic resizing property may
complicate exploitation, KernelSnitch still leaks information
from these hash tables.

Radix Tree. For ipc_ids.ipcs_idr.root_rt, our evalu-
ation was as follows: We begin by inserting ipcp objects to the
radix tree using sys_msgcreate until the entire first tree level
is filled with valid slots (i.e., 64 slots). We then alternatively
insert and remove an ipcp. This prompts the kernel to either
append a new tree level, as depicted in scenario ❷ of Figure 6,
or remove the just-appended level. After every insertion and
deletion, we perform a radix tree lookup with the probe syscall
sys_msgstat using an invalid key, where we do 1024 in
total. Depending on whether the radix tree consists of one
level ❶ or two levels ❸, the lookup timing varies. Figure 11
illustrates the histograms of access times with no structure-
agnostic amplification, depending on whether the radix tree has
one or two levels, as well as with amplification, increasing the
distinguishable between these histograms. While KernelSnitch
without the amplification resulted in FPR and FNR of 1.7%
and 3.9%, the amplification eliminated all of them.

Red-Black Tree. Contrary to the prior evaluations, we con-
duct a slightly different one for the hrtimer_bases.clock_-
base.active red-black tree. In this evaluation, we aim to
demonstrate how the enqueuing time depends on the occu-
pancy level. As the tree maintains self-balancing, we antici-
pate that the enqueuing time follows a logarithmic function

8

0 200 400 600 800 1,000

500

600

Occupancy Level

E
nq

ue
ui

ng
tim

e
W amp
W/o amp

Fig. 12: Leakage of hrtimer_bases.clock_base.active.

0 5 10 15
0

0.2

0.4

E
rr

or
R

at
io

Futex hash table

0 5 10 15
0

0.2

0.4
E

rr
or

R
at

io
POSIX timer hash table

0 5 10 15
0

0.2

0.4

Cores under Stress

E
rr

or
R

at
io

IPC hash table

0 5 10 15
0

0.2

0.4

Cores under Stress

E
rr

or
R

at
io

IPC radix tree

W/o amp Struct-agnostic amp Hardware-agnostic amp Both amps

Fig. 13: Noise evaluation results without and with amplifica-
tion methods as a function of the stress cores (i.e., 1 to 16).

depending on the occupancy level. We enqueue 1024 high-
resolution timers and simultaneously measure the enqueuing
time and obtain the ground truth using our helper kernel
module after each enqueue operation. Figure 12 depicts the
enqueuing time relative to the tree’s occupancy level with and
without structure-agnostic amplification. Both functions ex-
hibit a logarithmic dependency on the actual occupancy level.
Our amplification increases the enqueuing time by over 347%.
The occupancy level does not start at 0 timers, as the system
always has default timers enqueued, e.g., tick_sched_timer.

External Noise. We introduce noise either through stress
evaluation or directly into data structures. We show that the
most dominant noise factor is the CPU frequency fluctuation
and the noise resilience of our KernelSnitch side channel.

For the stress evaluation, we vary the number of workload
threads of stress-ng [41], [43], [52], ranging from 1 to
16, i.e., the number of logical cores for the evaluated Intel
i7-1260P. These workloads stress the CPU cores on which
the workload is running. We separately evaluate structure-
(i.e., distinguishing between 3 and 0 elements) and hardware-
agnostic amplification (i.e., flushing CPU caches), as well as
their combination. Figure 13 illustrates the error ratio observed
in the stress evaluation, relative to the number of CPU cores
experiencing stress. The error ratio represents the proportion of
incorrectly deduced elements compared to the total evaluated
(i.e., FPR+FNR). We note a rise in the error ratio when stress
is introduced to an equal or greater number of physical cores
(i.e., 12 cores). However, with both amplifications applied, we

observe a negligible error ratio below 1.5% if stress is applied
to fewer than 12 cores. This yields an accuracy of more than
98.5% until 3/4 of the full load. Concurrent measurement of
the CPU frequency shows that frequency fluctuation caused
by adaptive power management are the dominant noise factor
for the stress evaluation. These fluctuations result in varying
syscall execution times, perceived as noise for the attacker.

We also stress the Intel Xeon Gold 6530 (i.e., 64 cores)
with workload threads ranging from 16 to 63. Specifically,
we evaluate the POSIX timer hash table, observing no error
ratio across all tests with both amplifications applied. By
simultaneously measuring the CPU frequency, we observed
it to be almost constant throughout the evaluation, as this is
a desktop CPU with powerful cooling. This underscores the
finding that the dominant noise factor is frequency fluctuation,
most prevalent in laptop CPUs, e.g., Intel i7-1260P.

For introducing noise directly into the data structure, we
found that Phoronix’s Apache benchmark with 1 000 concur-
rent requests introduces the most noise into the futex hash
table compared to other benchmarks. It introduces noise in
the form of 55 000 (up to 100 000) hash bucket changes per
second. We applied both amplifications and evaluated on an
Intel i7-1260P, resulting in an error ratio less than 1%. The
simultaneous measurement of the CPU frequency shows that
noise due to frequency fluctuations is predominant.

VI. ATTACK CASE STUDIES

In this section, we demonstrate the practicality of Kernel-
Snitch attacks in three side-channel case studies: a covert chan-
nel, a kernel heap pointer leak, and a website fingerprinting
attack. We run the experiments on an Intel i7-1260P with
Ubuntu 22.04.4 and a Linux kernel v6.5. Our attacks have
an automated calibration phase directly at the start of the
exploit to determine the threshold between a low and high
occupancy levels. These thresholds remain consistent for the
specific data container structures and do not depend on the
allocation addresses of the structures as shown in Section V-B.

A. Covert Channel

We demonstrate that all container structures analyzed can
be used to establish a covert channel. Our covert channel uses
time slicing on the occupancy side channel to transmit data.

Threat Model. We assume that the sender and receiver
run co-located on the same system. The sender has access to
sensitive data but is strictly isolated and has no network access,
e.g., within a sandbox. The receiver has no access to sensitive
data but network-access permission, e.g., to a remote server to
exfiltrate data. The sender and receiver have no shared memory
or other resources shared besides the kernel itself.

Overview. We transmit data as a binary signal, e.g., in
Figure 14 a bit sequence of ‘0101’. We transmit a ‘1’ by in-
creasing the occupancy level by appending one or more objects
and a ‘0’ by reducing the occupancy level by removing one or
more objects. This results in a higher or lower probe syscall
time, which is what we build our channel on. We synchronize
our covert channel with a shared timer, e.g., rdtsc on x86 64.

9

time

occupancy
level

sender

receiver

append remove append remove

probe probe probe probe

‘0’ ‘1’ ‘0’ ‘1’

Fig. 14: KernelSnitch covert channel’s overview, where the
sender alters and the receiver probes the occupancy level of a
data structure in fixed time slices.

The transmission starts at a coarse-grained predetermined time
offset (e.g., the last 38 bits wrap around at a full minute), while
bits are transmitted in short predetermined time slices. For
each time slice, KernelSnitch adjusts the occupancy based on
the data being transmitted. The receiver process continuously
probes the occupancy throughout the time slice, using the
minimum probe value as a result, minimizing noise.

Design for Hash Tables. We initially identify a hash
bucket for communication. The sender process uses hardware-
agnostic amplification and populates one hash bucket with
many elements. Subsequently, the receiver process iterates
through the hash table, probing each bucket to determine if it
contains a substantial number of elements. When it identifies
the bucket, the receiver knows the bucket that will serve as the
shared channel. With this stage complete, the transfer starts.

We build two covert channels. The first covert channel is
based on fixed-size hash tables, leveraging futex_hash_-

table. A similar principle can be applied to other hash
tables with a fixed size, e.g., posix_timers_hashtable. The
second covert channel is based on dynamically-sized hash
tables, leveraging ipc_ids.key_ht. For the fixed-size futex
hash table, the sender initially populates the hash bucket with
64 futex queues. Subsequently, the receiver finds this hash
bucket, as described above. For the transmission, a single
appended futex queue is enough to transmit a ‘1’ bit, while
the absence of this futex queue transmits a ‘0’ bit. For the
dynamically-sized hash table, ipc_ids.key_ht, we initially
populate it with 16 keys to find the shared bucket and then
transmit data with occupancy differences of one key.

Design for a Radix Tree. The sender transmits ‘1’ with
the tree occupancy level 2 and a ‘0’ with tree level 1. The tree
level is manipulated by appending a specific key requiring an
additional level (see append_key in Figure 6) or removing
this key again. The receiver probes the radix tree occupancy,
where higher probe times indicate a ‘1’ and lower times a ‘0’.

Design for a Red-Black Tree. Appending 16 timers is
sufficient to create a distinct probe timing difference (see
Section V). Hence, the sender appends 16 timers at the tree’s
tail by setting a very high initial value, causing the red-black
tree to insert multiple levels. The sender and receiver encode
the data in timings: a lower timing corresponds to fewer levels,
i.e., a ’0’ bit; a higher timing indicates a ’1’ bit.

Evaluation. We evaluate all four data container structures
(i.e., fixed-size and resizable hash tables, radix tree, and red-
black tree). For each structure, we evaluate different time slice

200 600 1,000
0

200

400

600

Tr
ue

C
ap

.[
kb

ps
]

0

0.1

0.2

0.3

(a) Fixed-size hash table.

500 1,000
0

200

400

600

0

0.1

0.2

0.3

B
it-

E
rr

or
R

at
io

(b) Resizable hash table.

500 1,000
0

200

400

Raw Capacity [kbps]

Tr
ue

C
ap

.[
kb

ps
]

0

0.2

0.4

(c) Radix tree.

50 100
0

10

20

30

Raw Capacity [kbps]

0

0.1

0.2

0.3

B
it-

E
rr

or
R

at
io

(d) Red-black tree.

Fig. 15: KernelSnitch covert channel’s raw capacity, bit-error
ratio, and true capacity, ranging between 35 kbit/s to 580 kbit/s.

lengths and record the channel’s raw capacity – the maximum
potential data rate – and bit-error ratio. Shorter time slices
yield a higher transmission rate but reduce the receiver’s ability
to probe the occupancy level reliably, e.g., the measurement
may be more noisy. Consequently, while the raw capacity
increases with shorter time slice lengths, the true channel
capacity might decrease due to a higher bit-error ratio. To
represent our channels’ effectiveness, we compute the true
capacity3 based on the raw capacity and the bit-error ratio.

Figure 15 shows the true capacity as a function of the raw
capacity and bit-error ratio for all four structures. For the
fixed-size futex_hash_table (see Figure 15a), the bit-error
ratio is below 7% until the raw capacity reaches 781 kbit/s.
Beyond this point, the slice length becomes so short that the
receiver can only execute a maximum of 3 probing syscalls
to deduce the occupancy level. We observe that with at most
3 probing syscall, there is a steady increase in the bit-error
ratio, reducing the actual capacity. For the futex table, the
optimal true capacity of 580 kbit/s is achieved at a raw capacity
of 714 kbit/s and a bit-error ratio of 2.8%. We observe a
similar behavior for both the dynamically-sized hash table
(see Figure 15b) and the radix tree (see Figure 15c). The
point of a steady increase in the bit-error ratio occurs at a
raw capacity of 963 kbit/s and 1 003 kbit/s, respectively. Their
optimal true capacity is reached with 528 kbit/s and 483 kbit/s.
As both data structures are used for IPC communication, Linux
isolates them within the IPC namespace. Hence, this channel
is restricted to the sender and receiver sharing the same IPC
namespace, prevented by sandboxes, e.g., Docker or browsers.
For the red-black tree (see Figure 15d), we observe that the
optimal true capacity is 35 kbit/s, achieved at a raw capacity
of 100 kbit/s with a 16.5% bit-error ratio. This capacity is the
lowest of the four structures, primarily due to the extended
time required for appending and probing operations.

3We use Shannon’s theorem: T = C ·(1+((1−p)·ld(1−p)+p·ld(p))).

10

B. Kernel Heap Pointer Leak

Linux uses kernel heap addresses of objects such as mm_-

struct in the indices for hash table lookups. We demonstrate
that we can leak these kernel heap addresses used to index hash
table lookups using KernelSnitch to observe hash collisions
from user space. We then demonstrate that by performing a
cross-cache reuse [43], [65], [67], we can place other objects,
such as the security-critical msg_msg [14], [30], [71], at this
leaked address, thereby obtaining the location of other objects.

Threat Model. We assume an attacker has no privilege
to access information about kernel addresses, and the attacker
has an exploit that only works if a targeted kernel heap pointer
is known, e.g., for multiple exploits [5], [14], [25], [30], [71].

Design. Our kernel heap pointer leak consists of two steps:
First, we detect hash collisions of hash table entries with the
same kernel address but different user identifiers. Second, we
enumerate all possible kernel addresses to match the detected
collisions for the user identifiers used, resulting in the kernel
address used for indexing being leaked. Using the futex hash
table as an example, we aim to leak the mm_struct address,
which is used with the user identifier uaddr for indexing.

To detect hash collisions, we exploit the KernelSnitch side
channel as follows: Initially, we append one futex queue to a
hash bucket, such as fqueueA with uaddrA and mmA to bucket
2 as futex_hash(uaddrA,mmA) = 2. This state is depicted
with ❶ of Figure 5, where fqueueB represents a queue in
another bucket. We then apply structure-agnostic amplifica-
tion, appending multiple queues to the hash bucket 2 using the
same uaddrA and mmA. With hardware-agnostic amplification,
we observe the occupancy level of the hash bucket using the
same mm_struct (as the same user process) but with different
and invalid user identifiers, i.e., uaddrs. A low occupancy
level, such as for the user identifier uaddrY, indicates a dif-
ferent hash bucket. Conversely, a higher occupancy level, e.g.,
uaddrZ, means that the values futex_hash(uaddrA,mmA)

and futex_hash(uaddrZ,mmA) match. We denote this as a
hash collision of the user identifiers uaddrA and uaddrZ using
the same mm_struct. We repeat this process until a sufficient
number of hash collisions are found.

We now have a list of known user identifiers (i.e., uaddrs)
that, combined with one unknown kernel heap address (i.e.,
mm_struct), results in the same hash value. With the hash
function known (i.e., jhash2 for the futex hash table), we
enumerate all possible kernel addresses together with the
known user identifiers in an offline phase to determine hash
collisions. As described in the next paragraph, the search space
for all possible heap addresses of a specific mm_struct can
be reduced to ≈ 235.5. If we find the address that, combined
with all user identifiers, results in the same hash, we leak
the mm_struct heap address. In the simplified example of
Figure 5, we leak mmA as it results in the same hash value
when combined with the identifiers uaddrA and uaddrZ.

Since the kernel heap is directly accessed via the Direct
Physical Mapping (DPM) [44] (see Figure 16), the search
space is the DPM offset by the randomized page_off-

0xffffc87fffffffff

0xffff888000000000

p
a
g
e
_
o
f
f
s
e
t
_
b
a
s
e

8
pa

ge
m
m
_
s
t
r
u
c
t

sl
ab

DPM

Kernel space

User space

DPM

mm_struct

Fig. 16: The kernel memory layout on x86 64 illustrates the
kernel heap is accessible directly via the DPM, showcasing
how the heap-allocated mm_struct object is located.

set_base. The DPM serves as a virtual memory mapping
of, typically, the physical memory range and spans over a
significant part of the kernel address space. For instance,
on x86 64, it ranges between 0xffff888000000000 and
0xffffc87fffffffff, representing a search space of 246

(when considering 8B kernel heap alignment, it results in an
entropy of 43 bit). To reduce the search space, we consider the
alignment constraints of mm_struct, enforced by the page
and slab allocator4. The page allocator guarantees the outer
alignment, ensuring that the memory chunk (also called slab)
from which mm_struct objects are allocated is aligned to 8
pages. The slab allocator sits on top of the page allocator
and ensures that objects within these slabs are aligned to
object size (and usually also to the cache line size). Using
these insights allows us to substantially reduce the search
space for possible mm_struct addresses as follows: On our
experimental system using Linux v6.5 x86 64 with the default,
generic configuration, the mm_struct has a size of 1 360B.
Considering the alignment of the cache lines (rounded up to
1 408B), 23 locations are possible within the 8 slab page.
Hence, the search space is 246−12−3 · 23 ≈ 235.5, with
12 bits representing the page size and 3 bits representing the
mm_struct slab size. Given a complexity of ≈ 235.5, we
iteratively examine all possible addresses and try to match
them with previously leaked hash collisions produced with
different user identifiers. Subsequently, we reconstruct the key
corresponding to these hash collisions. As the kernel heap
address is one of the key’s inputs, we successfully obtain this
address, consequently leaking heap pointers.

Cross-Cache Reuse. We perform a cross-cache reuse [43],
[65], [67], which frees the leaked mm_struct object (including
all objects of its slab) and reallocates the freed (and leaked)
memory chunk for other objects. This allows us to leak the
location of objects other than those directly leaked via Ker-
nelSnitch. Below, we demonstrate that by using this approach,
we can leak the address of the security-critical msg_msg, used
in several kernel exploits [14], [30], [71]. While msg_msg is
an example, we can also leak the address of other objects.

4These details can be obtained from /sys/kernel/slab/mm_struct and
remain consistent across the same kernel binary.

11

free mm_structs allocate msg_msgs

8
pa

ge
m
m
_
s
t
r
u
c
t

sl
ab

DPM

mm_struct

①

slab base address

8
pa

ge
fr

ee
m

em
or

y
ch

un
k

DPM

②

8
pa

ge
m
s
g
_
m
s
g

sl
ab

DPM

msg_msg

③

slab base address

Fig. 17: Cross-cache reuse which frees the leaked mm_struct

(and all of its slab) and reallocate its memory chunk as msg_-
msgs, thereby obtaining the location of these msg_msgs.

Figure 17 shows the high-level overview, where Figure 20
provides more details. The state ① represents the leaked
mm_struct address within its slab. From this mm_struct

address, we derive the base address of its slab, which is
done by applying a bitmask of the 8 page memory chunk
(i.e., ((1<<15)-1)) to the address. Next, we deallocate all
mm_structs within this slab ②, causing the kernel to recycle
the leaked 8 page free memory chunk. We then allocate
multiple objects ③ of the targeted type (i.e., msg_msg with
size 4 048) to reclaim the 8 page memory chunk. Using the
alignment information of the allocator cache of msg_msg with
size 4 048 (i.e., kmalloc-cg-4096), we deduce all possible
object locations within this chunk. This results in 8 locations
of n · 4 096 + slab_base where n is between 0 and 7.

We reclaim the leaked slab previously used for mm_structs
as msg_msgs with size 4 048, as both objects use the same size
per-CPU page free list order of 3 (i.e., 23 page memory chunk).
These per-CPU page free lists act as a first-level allocator
cache of the page allocator. If we want to reclaim the leaked
8 page memory chunk as a different page size chunk, such
as kmalloc-cg-512 (which uses the per-CPU page free list
of order 2), we must first drain the page free list of order
2. Prior work [65] has presented appropriate techniques to
reliably perform this cross-page free-list reuse.

Evaluation. We implement our KernelSnitch kernel heap
leak in an architecture-agnostic manner. Architecture-specific
information is required to reconstruct the mm_struct address
from hash collisions due to variations in the DPM across
different architectures. We implement KernelSnitch to leak
the kernel heap address for x86 64, AArch64, and RISC-V
architectures. In our experiments, we successfully perform this
attack natively with our x86 64 experimental setup as well as
in QEMU for AArch64 and RISC-V architectures. For the
native experiment, we repeat the hash-collision leaking attack
10 times, with a leak time between 1.7 s to 2.1 s. Using these
collisions, we recover the correct mm_struct address in 2 s
to 61.5 s (iterating through 1.8% to 28.5% of the possible
kernel addresses) on a 24-core AMD EPYC 7443 processor.
Consequently, KernelSnitch requires between 3.7 s to 63.6 s
for a kernel heap leak. In addition to leaking the mm_struct,
we implement the cross-cache reuse described above for our

native x86 64 system. We successfully reclaimed the leaked
mm_struct slab for the kmalloc-cg-4096 slab cache, leak-
ing the address of the 8 msg_msg objects it contains. Similar
to the above, we performed 10 successful cross-cache reuses
on our native system. They took between 0.847 s to 0.901 s,
resulting in a total time of under 65 s for leaking a msg_msg.

We also exploit the POSIX timer hash table, reducing
potential k_itimer addresses from 238 to 29. While it only led
to a partial kernel heap address leak, it advances understanding
system vulnerabilities. The POSIX timer’s hash function lacks
uniform output distribution, preventing determination of the
linearly mapped input-to-output part (i.e., 9 bits). In contrast,
the futex hash table, using jhash, ensures uniform distribu-
tion, enabling of the leakage the entire kernel heap address.

C. Website Fingerprinting

This section presents a website fingerprinting attack, show-
ing its capability to determine when a user accesses a website
from the Ahrefs top 100 [1] with an F1 score of 89.3%.

Threat Model. We assume the attacker executes code on
the same machine as the victim but is isolated by the web
browser’s sandbox. Since we assume a sandboxing isolation
(e.g., for the mount and network namespace), approaches such
as calling netcat to leak browser activity cannot be used.

Design. Web browsers like Firefox rely on user-space locks,
i.e., futexes, to handle transmitted and received data. During
website access, the browser acquires and releases these locks
and interacts with the futex hash table. This behavior creates a
unique occupancy level fingerprint in the futex hash table. We
leverage KernelSnitch to leak the futex hash table’s occupancy
level in this side-channel attack. We use a Convolutional
Neural Network (CNN) to classify these occupancy level
fingerprints of the Ahrefs top 100 websites [1].

We use the occupancy-level side channel of the futex hash
table to obtain website traces in two stages: First, we find for
each hash bucket a unique user-space address, allowing us to
leak the occupancy level of each bucket with sys_futex_-

wake, as represented in Figure 5. To achieve this, we leverage
the hardware-agnostic leakage amplification by appending a
significant number of futex queues to a hash bucket. Using
structure-agnostic leakage amplification, we probe all buckets
with incremental user-space addresses to identify a bucket with
a significant number of queues appended. Upon discovering
a significant hash bucket, we validate that this user-space
address does not cause a collision with a previously found
user-space address. This appending and probing routine is
repeated for all buckets. As a result of this initial stage, we
have a set of user-space addresses indexing all hash buckets,
which we refer to as our probe set. Second, we use our probe
set to determine the access times of each hash bucket with
20 samples per second. For probing, we first iterate over
all hash buckets and then repeat this process for the entire
sample timeframe (i.e., 50ms). This way, we have structure-
agnostic amplification without explicitly flushing the CPU
caches. Subsequently, we take the minimum probe value for
each hash bucket within a timeframe. This is repeated during

12

0 100 200

200

400

600

B
uc

ke
t

D
el

ay
s

alibaba.com

0 100 200

200

400

600

B
uc

ke
t

D
el

ay
s

google.com

0 100 200

200

400

600

Time in 50ms steps

B
uc

ke
t

D
el

ay
s

xnxx.com

0 100 200

200

400

600

Time in 50ms steps
B

uc
ke

t
D

el
ay

s

youtube.com

Fig. 18: Traces of 4 famous websites, showing the delay of
all bucket measurements on the y axis while website loading.

loading a website (i.e., 15 s), creating a two-dimensional trace,
consisting of the access times of all buckets at 300 timestamps.
Finally, we create a histogram, rounding all bucket delays to
the nearest integer and summing all up. Figure 18 shows four
website traces. The x-axis is the time axis, and the y-axis
shows the bucket delays, with the color darkness representing
the number of buckets with each delay.

Our attack consists of an online and offline phase for data
collection and evaluation of website traces. In the online phase,
a user-space process runs KernelSnitch on the system within a
sandbox, probing all hash buckets of the futex hash table, re-
sulting in a website accessing trace. The offline phase consists
of analyzing and classifying the collected traces. To classify
the traces, we use a CNN with nine convolutional layers
in three different sizes. The two-dimensional histograms, as
shown in Figure 18, are the inputs to the CNN.

Evaluation. We record 100 traces for each of the 100
websites on Firefox (Chrome results in similar traces). We split
the traces into 80% training and 20% test sets. Of the training
set, we use 10% for the validation used set while training. We
perform a 5-fold cross validation by training the CNN with five
randomly selected sets. Over the five validations, we achieve
an average F1 score of 89.3%. Figure 21 shows the confusion
matrix with an F1 score of 89.5%.

VII. RELATED WORK

Numerous physical properties carry an information signal
that is often tied to the specific implementation of a system or
algorithm. These include power, radiation, temperature, sound,
light emission, and time, with time being the most commonly
used. More recent software side channels also extract infor-
mation through timing differences induced by other physical
properties [46], [64]. Lampson already reported in 1973 that
timing differences could be exploited to transmit or extract
information covertly [40]. In 1996, Kocher [37] presented the
first timing side-channel attack on a cryptographic algorithm.
Following the numerous timing-based attacks on cryptographic
algorithms [7], [60], Osvik et al. [48] generalized the ap-
proaches into two generic techniques, Evict+Time and Prime+
Probe. A decade later, Yarom et al. [68] presented Flush+

Reload, monitoring cache-lines’ state by removing them from
the cache and timing a reload to the corresponding memory
location. The timing depends on if the victim has accessed
the cache line in between. Flush+Reload has virtually no false
results and is frequently used by other attacks [38], [42].

Software-observable timing differences can be induced by
caches and any behavioral difference on the software or
instruction level, e.g., software caches [16], [22], [43], [63],
page-fault interrupts [59], other interrupts [15], compression
algorithms [6], [21], [33], [53], [55], differences in instruction
or memory lookup sequences [62], [68], and many others.
While the concept of constant-time [37] implementations
has found wide adoption for cryptographic algorithms, the
situation is much more difficult for general-purpose code [54].
Gao et al. [17] presented information leakage of files not fully
namespaced allowing for covert channels. Gruss et al. [22]
found that the operating system page cache can be exploited
similarly to hardware caches. Their insights show that mi-
croarchitectural buffers and caches similarly exist in operating
systems, again with caches, indicating an architectural inter-
face is also applicable to the operating system. More recently,
Patel et al. [49] presented a novel performance-degrading
attack that exploits intra-kernel contention of locked kernel
resources. While not a side channel, their result indicates that
more architectural elements in the kernel may be exploited.
Jiang et al. [31] showed that file system sync operations affect
each other’s timing and can be used to build a covert channel,
achieving transmissions of up to 20 kbit/s with an error rate
0.4%. Chen et al. [10] showed that a similar timing influence
also exists with write buffers for shared files. By filling or
not filling the write buffer, they can covertly transmit up
to 10 kbit/s with a 0.004% error rate. Lee et al. [41] and
Maar et al. [43] discovered timing side channels in the Linux
slab allocator, inferring whether a new slab is created. This
leakage increases the success rate for heap spraying [41] or
cross-cache attacks [43]. Shen et al. [56] presented a covert
channel based on mutual exclusion primitives [70], achieving
transmission rates of up to 13.1 kbit/s with a 0.65% error rate.

The concept of software-induced timing side channels is
also related to the research problem of algorithmic complexity
attacks [13]. Algorithmic complexity attacks try to provide
systems with input that triggers the algorithmic worst case,
e.g., a bucket with a long linked list instead of a flat hash table.
The goal in these attacks is often denial of service [13], [57],
deteriorating the runtime. Several works, therefore, discuss
mitigations against denial-of-service algorithmic complexity
attacks [4], [35]. Petsios et al. [50] presented a fuzzer to find
algorithmic worst cases, including compression algorithms, for
algorithmic complexity attacks. Schwarzl et al. [55] similarly
built a fuzzer to find algorithmic worst cases in compres-
sion algorithms to build a new side-channel attack, showing
the close relation between these two strands of research.
Sun et al. [58] showed that algorithmic complexity attacks
can also be used to build covert channels. Cai et al. [8]
exploited algorithmic complexity attacks when exploiting race
conditions on Unix file systems.

13

VIII. MITIGATIONS

Our work extends prior research on software-induced tim-
ing side channels, showing that varying access timings of
any shared kernel resource can also introduce a timing side
channel, which, given the kernel interfaces, can potentially
be exploitable from user space. Thus, the operating system
level introduces exploitable leakage even when eliminating all
hardware side channels and following all best practices for
user software. Mitigating KernelSnitch has to be evaluated
with performance and user experience, similar to other side
channels [26], [47]. The key factors that enable KernelSnitch
are the sharing of data container structures, the combination
of privileged and unprivileged information in the same shared
element, the runtime variance depending on a secret state, and
the possibility to measure the runtime. Eliminating any of these
can fully or partially mitigate KernelSnitch.

Measuring Time. Prior work studied the removal of
precise timing measurements as a defense against side-channel
attacks [27], [39]. However, other works also showed how
attackers can resort to alternative timing methods or mount
attacks entirely without timing [51], [63], [66], [69]. In our
threat model, multiple timing sources are available for legiti-
mate reasons, and removing them would be a highly disruptive
change for software developers and require hardware changes.

Combining Privileged and Unprivileged Information.
The aggregation of privileged and unprivileged information in
shared elements has already been identified to introduce secu-
rity issues on the hardware level [23], [61]. For KernelSnitch,
we also exploit that unprivileged (i.e., user identifiers) are
combined with privileged information (i.e., kernel addresses).
However, eliminating this only prevents the kernel heap leak.

Runtime Variance. A constant-time approach [7], [37]
is not directly possible against KernelSnitch as the container
structures are, in principle, only bounded by the available
memory. However, KernelSnitch could be mitigated by using a
watermark constant-time approach: Instead of always resorting
to a (hypothetical) worst-case execution time, it may be a
viable approach to maintain a watermark level of the maximum
number of elements to be iterated through. Syscalls iterating
through structures will consequently wait until the watermark
execution time is reached, eliminating the secret-dependent
runtime variance. Further security can be gained by increasing
the watermark level in a coarse step size.

Sharing of Container Structures. Another mitigation is
to eliminate the sharing of the kernel data container struc-
tures, e.g., isolating kernel data container structures within
namespaces. However, this involves significant reworking and
notable performance and memory overheads for the kernel.
Future work needs to investigate the practicality of such
isolation. For instance, the red-black tree that organizes global
timers by their firing order poses a challenge.

IX. CONCLUSION

In this paper, we presented KernelSnitch, a novel generic
side-channel attack targeting kernel data container structures.
We demonstrated and evaluated leakage amplification to make

this side channel exploitable from user space. We performed
three case study side-channel attacks: covert channel, kernel
heap pointer leak, and website fingerprinting. Finally, we
discussed potential mitigations and highlighted challenges.

ACKNOWLEDGMENT

We thank Mathias Oberhuber and the anonymous reviewers
for their valuable feedback. This research is supported by the
Austrian Research Promotion Agency (FFG) via the SEIZE
project (FFG grant number 888087), the European Research
Council (ERC project FSSec 101076409), and the Austrian
Science Fund (FWF SFB project SPyCoDe 10.55776/F85).
Additional funding was provided from Red Hat and Google.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

REFERENCES

[1] Ahrefs. Top Websites, 2024. URL: https://ahrefs.com/top.
[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,

Cesar Pereida Garcı́a, and Nicola Tuveri. Port Contention for Fun and
Profit. In S&P, 2019.

[3] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van de Pol,
and Yuval Yarom. Amplifying Side Channels Through Performance
Degradation. In ACSAC, 2016.

[4] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, and Justine Sherry.
Surgeprotector: Mitigating Temporal Algorithmic Complexity Attacks
Using Adversarial Scheduling. In ACM SIGCOMM, 2022.

[5] Awarau and pql. CVE-2022-29582 An io uring vulnerability, 2022.
URL: https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/.

[6] Tal Be’ery and Amichai Shulman. A Perfect CRIME? Only TIME Will
Tell. In Black Hat Europe, 2013.

[7] Daniel J. Bernstein. Cache-Timing Attacks on AES, 2005. URL: http:
//cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[8] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting UNIX file-system
races via algorithmic complexity attacks. In S&P, 2009.

[9] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In
AsiaCCS, 2020.

[10] Congcong Chen, Jinhua Cui, Gang Qu, and Jiliang Zhang. Write+Sync:
Software Cache Write Covert Channels Exploiting Memory-disk Syn-
chronization. TIFS, 2024.

[11] Jonathan Corbet. Trees I: Radix trees, 2006. URL: https://lwn.net/
Articles/175432/.

[12] Jonathan Corbet. Trees II: red-black trees, 2006. URL: https://lwn.net/
Articles/184495/.

[13] Scott A Crosby and Dan S Wallach. Denial of Service via Algorithmic
Complexity Attacks. In USENIX Security, 2003.

[14] Devil. CoRJail: From Null Byte Overflow To Docker Escape Exploiting
poll list Objects In The Linux Kernel, 2022. URL: https://syst3mfailure.
io/corjail/.

[15] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. No Pardon for
the Interruption: New Inference Attacks on Android Through Interrupt
Timing Analysis. In S&P, 2016.

[16] Edward W Felten and Michael A Schneider. Timing attacks on web
privacy. In CCS, 2000.

[17] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis,
and Haining Wang. ContainerLeaks: Emerging Security Threats of
Information Leakages in Container Clouds. In DSN, 2017.

[18] Stefan Gast, Jonas Juffinger, Lukas Maar, Christoph Royer, Andreas
Kogler, and Daniel Gruss. Remote Scheduler Contention Attacks. In
FC, 2024.

[19] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Andreas Kogler, Simone Franza, Markus Köstl, and Daniel Gruss.
SQUIP: Exploiting the Scheduler Queue Contention Side Channel. In
S&P, 2023.

[20] Luke Gix. FUSE for Linux Exploitation 101, 2022. URL: https:
//exploiter.dev/blog/2022/FUSE-exploit.html.

14

https://ahrefs.com/top
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://lwn.net/Articles/175432/
https://lwn.net/Articles/175432/
https://lwn.net/Articles/184495/
https://lwn.net/Articles/184495/
https://syst3mfailure.io/corjail/
https://syst3mfailure.io/corjail/
https://exploiter.dev/blog/2022/FUSE-exploit.html
https://exploiter.dev/blog/2022/FUSE-exploit.html

[21] Yoel Gluck, Neal Harris, and Angelo Prado. BREACH: reviving the
CRIME attack. Unpublished manuscript, 2013.

[22] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Tracht-
enberg, Jason Hennessey, Alex Ionescu, and Anders Fogh. Page Cache
Attacks. In CCS, 2019.

[23] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR. In CCS, 2016.

[24] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In
USENIX Security, 2015.

[25] h0mbre. Escaping the Google kCTF Container with a Data-Only Exploit,
2023. URL: https://h0mbre.github.io/kCTF Data Only Exploit/#.

[26] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang Schröder-
Preikschat, and Timo Hönig. The Price of Meltdown and Spectre: Energy
Overhead of Mitigations at Operating System Level. In EuroSys, 2021.

[27] Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time. Journal
of Computer Security, 1992.

[28] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In S&P, 2013.

[29] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In CCS, 2016.

[30] javierprtd. No CVE for this bug which has never been in the of-
ficial kernel, 2023. URL: https://soez.github.io/posts/no-cve-for-this.
-It-has-never-been-in-the-official-kernel/.

[31] Qisheng Jiang and Chundong Wang. Sync+Sync: A Covert Channel
Built on fsync with Storage. In USENIX Security, 2024.

[32] Choo Yi Kai. A new method for container escape using
file-based DirtyCred, 2023. URL: https://starlabs.sg/blog/2023/
07-a-new-method-for-container-escape-using-file-based-dirtycred/.

[33] John Kelsey. Compression and Information Leakage of Plaintext. In
Fast Software Encryption, 2002.

[34] Michael Kerrisk. futex(2) — Linux manual page, 2023.
https://man7.org/linux/man-pages/man2/futex.2.html.

[35] Suraiya Khan and Issa Traore. A Prevention Model for Algorithmic
Complexity Attacks. In DIMVA, 2005.

[36] Amit Klein and Benny Pinkas. From IP ID to Device ID and KASLR
Bypass. In USENIX Security, 2019.

[37] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In CRYPTO, 1996.

[38] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In S&P, 2019.

[39] David Kohlbrenner and Hovav Shacham. Trusted Browsers for Uncertain
Times. In USENIX Security, 2016.

[40] Butler W Lampson. A note on the confinement problem. Communica-
tions of the ACM, 16(10):613–615, 1973.

[41] Yoochan Lee, Jinhan Kwak, Junesoo Kang, Yuseok Jeon, and Byoungy-
oung Lee. PSPRAY: Timing Side-Channel based Linux Kernel Heap
Exploitation Technique. In USENIX Security, 2023.

[42] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security, 2018.

[43] Lukas Maar, Stefan Gast, Martin Unterguggenberger, Mathias Oberhu-
ber, and Stefan Mangard. SLUBStick: Arbitrary Memory Writes through
Practical Software Cross-Cache Attacks within the Linux Kernel. In
USENIX Security, 2024.

[44] Lukas Maar, Martin Schwarzl, Fabian Rauscher, Daniel Gruss, and
Stefan Mangard. DOPE: DOmain Protection Enforcement with PKS.
In ACSAC, 2023.

[45] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the Other Side: SSH over Robust Cache Covert Channels in
the Cloud. In NDSS, 2017.

[46] Mathias Oberhuber, Martin Unterguggenberger, Lukas Maar, Andreas
Kogler, and Stefan Mangard. Power-Related Side-Channel Attacks using
the Android Sensor Framework. In NDSS, 2025.

[47] OpenSSL. Security Policy, 2024. URL: https://www.openssl.org/
policies/general/security-policy.html.

[48] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In CT-RSA, 2006.

[49] Yuvraj Patel, Chenhao Ye, Akshat Sinha, Abigail Matthews, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Michael M. Swift.
Using Trātr. to tame Adversarial Synchronization. In USENIX Security,
2022.

[50] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic
Complexity Vulnerabilities. In CCS, 2017.

[51] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Ver-
bauwhede. ShowTime: Amplifying Arbitrary CPU Timing Side Chan-
nels. In AsiaCCS, 2023.

[52] Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel Gruss.
IdleLeak: Exploiting Idle State Side Effects for Information Leakage.
In NDSS, 2024.

[53] Juliano Rizzo and Thai Duong. The CRIME attack. In ekoparty security
conference, volume 2012, 2012.

[54] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In NDSS, 2018.

[55] Martin Schwarzl, Pietro Borrello, Gururaj Saileshwar, Hanna Müller,
Michael Schwarz, and Daniel Gruss. Practical Timing Side Channel
Attacks on Memory Compression. In S&P, 2023.

[56] Chaoqun Shen, Jiliang Zhang, and Gang Qu. MES-attacks: Software-
controlled covert channels based on mutual exclusion and synchroniza-
tion. In DAC, 2023.

[57] Randy Smith, Cristian Estan, and Somesh Jha. Backtracking Algorithmic
Complexity Attacks Against a NIDS. In ACSAC, 2006.

[58] Xiaoshan Sun, Liang Cheng, and Yang Zhang. A Covert Timing Channel
via Algorithmic Complexity Attacks: Design and Analysis. In IEEE
International Conference on Communications (ICC), 2011.

[59] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. Mem-
ory Deduplication as a Threat to the Guest OS. In EuroSys, 2011.

[60] Yukiyasu Tsunoo, Teruo Saito, and Tomoyasu Suzaki. Cryptanalysis of
DES implemented on computers with cache. In CHES, 2003.

[61] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to the
Intel SGX Kingdom with Transient Out-of-Order Execution. In USENIX
Security, 2018.

[62] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic.
In CCS, 2018.

[63] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is
still ticking: Timing attacks in the modern web. In CCS, 2015.

[64] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: Turning
Power Side-Channel Attacks Into Remote Timing Attacks on x86. In
USENIX Security, 2022.

[65] Le Wu and Qi Zhang. Game of Cross Cache: Let’s win it in a more ef-
fective way!, 2024. URL: https://i.blackhat.com/Asia-24/Presentations/
Asia-24-Wu-Game-of-Cross-Cache.pdf.

[66] Haocheng Xiao and Sam Ainsworth. Hacky Racers: Exploiting
Instruction-Level Parallelism to Generate Stealthy Fine-Grained Timers.
In ASPLOS, 2023.

[67] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan
Zhang, and Dawu Gu. From collision to exploitation: Unleashing use-
after-free vulnerabilities in linux kernel. In CCS, 2015.

[68] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security, 2014.

[69] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and Christo-
pher W Fletcher. Synchronization Storage Channels (S2C): Timer-
less Cache Side-Channel Attacks on the Apple M1 via Hardware
Synchronization Instructions. In USENIX Security, 2023.

[70] Jiliang Zhang, Chaoqun Shen, and Gang Qu. Mex+Sync: Software
Covert Channels Exploiting Mutual Exclusion and Synchronization.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

[71] Xiaochen Zou and Zhiyun Qian. Exploit esp6 modules in Linux kernel,
2022. URL: https://etenal.me/archives/1825.

APPENDIX

15

https://h0mbre.github.io/kCTF_Data_Only_Exploit/#
https://soez.github.io/posts/no-cve-for-this.-It-has-never-been-in-the-official-kernel/
https://soez.github.io/posts/no-cve-for-this.-It-has-never-been-in-the-official-kernel/
https://starlabs.sg/blog/2023/07-a-new-method-for-container-escape-using-file-based-dirtycred/
https://starlabs.sg/blog/2023/07-a-new-method-for-container-escape-using-file-based-dirtycred/
https://www.openssl.org/policies/general/security-policy.html
https://www.openssl.org/policies/general/security-policy.html
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://etenal.me/archives/1825

1 struct signal_struct;
2 struct list_head {
3 struct list_head *next, *prev;
4 };
5 struct hlist_head {
6 struct hlist_node *first;
7 };
8 struct hlist_node {
9 struct hlist_node *next, **pprev;

10 };
11 struct k_itimer {
12 ...
13 u32 it_id;
14 struct hlist_node t_hash;
15 struct signal_struct *it_signal;
16 ...
17 };
18 DEFINE_HASHTABLE(posix_timers_hashtable, 9);
19

20 // Calculates hash for hash table
21 int hash(struct signal_struct *sig, unsigned int nr) {
22 return hash_32(hash32_ptr(sig) ^ nr, 9);
23 }
24

25 // Iterates throught the bucket’s linked list to find
26 // k_timer matching sig and id
27 struct k_itimer *__posix_timers_find(
28 struct hlist_head *head,
29 struct signal_struct *sig,
30 u32 id) {
31 struct k_itimer *tim;
32

33 hlist_for_each_entry(tim, head, t_hash) {
34 if ((tim->it_signal == sig) && (tim->it_id == id))
35 return tim;
36 }
37 return NULL;
38 }
39

40 // k_timer lookup with id
41 struct k_itimer *posix_timer_by_id(u32 id) {
42 struct hlist_head *head;
43 struct signal_struct *sig = current->signal;
44

45 head = &posix_timers_hashtable[hash(sig, id)];
46 return __posix_timers_find(head, sig, id);
47 }

Listing 1: Simplified C equivalent for a timer lookup.

1 posix_timer_by_id:
2 push rbp
3 push r13
4 push rbx
5 // sign = current->signal
6 mov gs:0x32880, rax
7 mov 0xbf0(rax), rdx
8 mov rdx, rax
9 // h = hash(sign, id)

10 shr $0x20, rax
11 xor rdx, rax
12 xor r13d, eax
13 imul $0x61c88647, eax, eax
14 shr $0x17, eax
15 // head = &posix_timers_hashtable[h]
16 mov posix_timers_hashtable(, rax, 8), rbx
17 // node = (hlist_node *)head
18 0x50:
19 // tim = (k_itimer *)container_of(node,k_itimer,t_hash)
20 sub $0x10, rbx
21 test rbx, rbx
22 je <posix_timer_by_id+0x6b>
23 // (tim->it_signal == sig)
24 mov 0x60(rbx), rax
25 cmp rax, rdx
26 je <posix_timer_by_id+0x86>
27 0x62:
28 // tim = (k_itimer *)tim->t_hash.next
29 mov 0x10(rbx), rbx
30 test rbx, rbx
31 jne <posix_timer_by_id+0x50>
32 0x6b:
33 // return NULL
34 xor ebx, ebx
35 mov rbx, rax
36 pop rbx
37 pop r13
38 pop rbp
39 jmp __x86_return_thunk
40 0x86:
41 // (tim->it_id == id)
42 cmp 0x34(rbx), r13d
43 jne <posix_timer_by_id+0x62>
44 // return tim
45 mov rbx, rax
46 pop rbx
47 pop r13
48 pop rbp
49 jmp <__x86_return_thunk>

Listing 2: ASM instructions executed for the lookup.

Fig. 19: POSIX timer lookup from the timer’s hash table using the function posix_timer_by_id. The instructions in blue
represent the instructions executed for each element contained in the linked list of the hash bucket.

sys_timer_create():
sign = current.signal
id = sign.next_id++
tim = k_itimer(sign, id)
h = timer_hash(id, sign)
hbucket =
posix_timers_hashtable[h]
hbucket.append(tim)
return id

Listing 3: Alter occupancy
of POSIX timer’s hash table.

sys_clock_gettime(id):
sign = current.signal
h = timer_hash(id, sign)
hbucket =
posix_timers_hashtable[h]
for tim in hbucket:
if tim.sign == sign and

tim.id == id:
return tim.get_time()

return ERROR

Listing 4: Probe occupancy of
POSIX timer’s hash table.

sys_msgcreate(key):
ipc_ns = current.ipc_ns
ipc_ids = ipc_ns.get_ids()
msgq = msg_queue(key)
h = ipc_ids_hash(key)
ipc_ids[h].append(
msgq.ipcp)

return msgq.ipcp.id

Listing 5: Alter occupancy
of IPC key’s hash table.

sys_msgget(key):
ipc_ns = current.ipc_ns
ipc_ids = ipc_ns.get_ids()
h = ipc_ids_hash(key)
hbucket = ipc_ids[h]
for ipcp in hbucket:
if ipcp.key == key:
return ipcp.id

return ERROR

Listing 6: Probe occupancy of
IPC key’s hash table.

16

Drain mm_struct slab cache
Drain msg_msg slab cache

①

Allocate (obj_per_slab · (min_partials+ 1))
mm_struct objects

②

Execute fork & exec to spawn
KernelSnitch process

③

Allocate (obj_per_slab · (min_partials+ 1))
mm_struct objects

④
Use KernelSnitch to observe hash collisions
(requires about 2 s)

⑤

Free 2 · (obj_per_slab · (min_partials+ 1)) mm_struct objects from ② and ④ as well as the
mm_struct object from the KernelSnitch process ⑤

⑥

Allocate (obj_per_slab · (min_partials+ 1))
msg_msg objects

⑦

Leaks the mm_struct address from ⑤, where its
23 page slab now reused for msg_msg objects

⑧

Call execve with a user address for argv that causes
the syscall to stall after mm_struct alloc but before
the free (e.g., via FUSE [20], userfaultfd, or slow
page fault [32]).

Call msgsnd with a valid queue id (i.e., msqid) and
message size (i.e., msgsz) of 4 048 to allocmsg_msg
objects from kmalloc-cg-4096.

Similar to ① call execve and stall after mm_struct
alloc but before the free.

Kill process ⑤ and continue stall of ② and ④
to free all of these mm_struct objects.

Similar to ① call msgsnd to alloc msg_msg objects
from kmalloc-cg-4096.

Fig. 20: Detailed workflow of the cross-cache reuse.

TABLE I: Evaluation results for data container structures: X to Y denotes the difference from X compared to Y elements. 1 to
0 signifies no hardware-agnostic amplification, while 3 to 0 indicates hardware-agnostic amplification with 2 extra elements.
✶ denotes the decrease in FPR and FNR from no amplification (i.e., 1 to 0) to structure- and hardware-agnostic amplification
(i.e., 3 to 0). ✫ denotes Linux kernel v5.15, where for the other three we used v6.5.

Container instance W/o struct-agnostic W struct-agnostic Reduction ✶
1 to 0 3 to 0 1 to 0 3 to 0

FPR FNR FPR FNR FPR FNR FPR FNR in FPR in FNR
% % % % % % % % % %

posix_timers_hashtable 1.8 10.0 0.0 9.4 0.0 0.0 0.0 0.0 100 100
futex_hash_table 0.0 0.6 0.0 0.6 0.0 0.0 0.0 0.0 100 100
ipc_ids.key_ht 3.1 2.8 1.7 2.7 0.1 0.1 0.0 0.1 100 97
ipc_ids.ipcs_idr.root_rt 1.7 3.9 - - 0.0 0.0 - - 100 100
posix_timers_hashtable 0.9 9.1 0.0 7.3 0.0 0.3 0.0 0.3 100 97
futex_hash_table 0.0 0.5 0.0 0.5 0.0 0.2 0.0 0.1 100 76
ipc_ids.key_ht 4.5 18.6 0.0 6.9 0.1 0.8 0.0 0.3 100 98
ipc_ids.ipcs_idr.root_rt 0.0 32.9 - - 0.0 1.7 - - 100 95
posix_timers_hashtable 0.0 4.2 0.0 0.3 0.0 0.0 0.0 0.0 100 100
futex_hash_table 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 100
ipc_ids.key_ht 1.7 0.8 0.0 0.0 0.2 0.0 0.0 0.0 100 100
ipc_ids.ipcs_idr.root_rt 2.7 5.3 - - 0.0 0.2 - - 100 96
posix_timers_hashtable 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 100 100
futex_hash_table 0.0 4.3 0.0 4.3 0.0 0.0 0.0 0.0 100 100
ipc_ids.key_ht 0.7 0.8 0.0 0.0 0.1 0.0 0.0 0.0 100 100
ipc_ids.ipcs_idr.root_rt 0.0 0.9 - - 0.0 0.0 - - 100 100

Intel i7-1260P

Intel i7-1165G7

✫
Intel i7-12700

Intel Xeon Gold 6530

17

Fig. 21: Confusion matrix of our KernelSnitch website fingerprinting attack with an F1 score of 89.5%.

18

APPENDIX A
ARTIFACT APPENDIX

A. Abstract

KernelSnitch is a novel software-induced side-channel at-
tack that targets kernel data container structures such as hash
tables and trees. These structures vary in size and access
time depending on the number of elements they hold, i.e.,
the occupancy level. KernelSnitch exploits this variability
to constitute a timing side channel that is exploitable to
an unprivileged, isolated attacker from user space. Despite
the small timing differences relative to system call runtime,
we demonstrate methods to reliably amplify these timing
variations for successful exploitation.

The artifacts demonstrate the timing side channel and show
the practicality of distinguishing between different occupancy
levels. We provide a kernel module and execution scripts for
evaluation. While our timing side channel is software induced,
we recommend evaluation on hardware similar to ours (i.e.,
Intel i7-1260P, i7-1165G7, i7-12700, and Xeon Gold 6530) to
reproduce similar results as in our paper. While the attacks
should work generically on Linux kernels, we recommend to
evaluate the artifacts on downstream Ubuntu Linux kernels
v5.15, v6.5, or v6.8, as these are the versions we primarily
evaluate. For the timing side channel, the evaluation shows
that the occupancy level of data container structures can be
leaked by measuring the timing of syscalls that access these
structures.

B. Description & Requirements

1) Security, Privacy, and Ethical Concerns: The artifacts
do not perform any destructive steps, as we only show the
timing side channel to leak the occupancy level of data
container structures and exclude the case studies, i.e., secretly
transmitting data via a covert channel, leaking kernel heap
pointers and monitoring user activity via website fingerprint-
ing.

2) How to Access: We provide the source code (github) for
performing the timing side channel.

3) Hardware Dependencies: While the timing side channel
is software induced, one of the amplification methods depends
on hardware buffers, i.e., the CPU caches. We have evaluated
the Intel i7-1260P, i7-1165G7, i7-12700, and Xeon Gold 6530.
We, therefore, expect similar results with similar processors.

4) Software Dependencies: While the attacks should gener-
ically work on Linux kernels, we recommend evaluating the
artifacts on a downstream Ubuntu Linux kernel v5.15, v6.5, or
v6.8. For reference, our primary evaluation system was Ubuntu
22.04 with generic kernels v5.15, v6.5, or v6.8.

One part of the artifact evaluation is to insert a kernel
module that requires root privileges. This module is required
to obtain the ground truth of the occupancy level of kernel data
structures. We tested our kernel module with the downstream
Ubuntu Linux kernels v5.15, v6.5, and v6.8. For other kernels
that have different config files (or other downstream changes)
our implemented module may not do what we intended.

Specifically, in order to obtain the occupancy ground truth of
the data structures, we redefined and reimplemented several
structures and functions according to how they are imple-
mented in the Ubuntu Linux kernel. We did this because
several functions used to access kernel data structures are im-
plemented as inline functions, e.g., __rhashtable_lookup,
which prevented us from calling these functions directly.
Another reason is that several structs, e.g., msg_queue, are
defined in c files, which also prevents us from using these
struct definitions. This module is required to obtain the ground
truth of the occupancy level of kernel data structures.

5) Benchmarks: None.

C. Artifact Installation & Configuration

1) Installation: The installation required to perform the
artifact evaluation works as following:

• Clone our github repository (github) to the /repo/path

directory.
• Change directory to /repo/path/modules.
• Execute make init to build and insert the kernel mod-

ule.
• Change directory to /repo/path.
• Select in /repo/path/cacheutils.h either the INTEL

or AMD macro depending on your system.
• Execute make to build all experiment binaries.
2) Basic Tests: Testing the basic functionality works as

following:
• Change directory to /repo/path.
• Execute ./basic_test.elf should print [+] basic

test passed.

D. Major Claims

We provide artifacts verifying the following claims:
(C1): KernelSnitch can distinguish different occupancy levels

of the fixed-sized hash table posix_timers_hashtable

by measuring the timing of sys_clock_gettime. This is
proven by experiment (E1) whose approach is described
in Section IV-A Vulnerable Hash Tables and results are
illustrated in Section V-B POSIX Timer Hash Tables
and Figure 8.

(C2): KernelSnitch can distinguish different occupancy levels
of the fixed-sized hash table futex_hash_table by
measuring the timing of sys_futex. This is proven by
experiment (E2) whose approach is described in Section
IV-A Futex Hash Tables and results are illustrated in
Section V-B Futex Hash Tables and Figure 9.

(C3): KernelSnitch can distinguish different occupancy levels
of the dynamically-sized hash table ipc_ids.key_ht by
measuring the timing of sys_msgget. This is proven by
experiment (E3) whose approach is described in Section
IV-A Vulnerable Hash Tables and results are illustrated
in Section V-B IPC Hash Tables and Figure 10.

(C4): KernelSnitch can distinguish two occupancy levels of
the radix tree ipc_ids.ipcs_idr.root_rt by mea-
suring the timing of sys_msgget. This is proven by
experiment (E4) whose approach is described in Section

19

https://github.com/IAIK/KernelSnitch/
https://github.com/IAIK/KernelSnitch/

IV-B Radix Tree and results are illustrated in Section
V-B Radix Tree and Figure 11.

(C5): KernelSnitch can distinguish occupancy levels of the
red-black tree hrtimer_bases.clock_base.active

by measuring the timing of sys_timerfd_settime.
This is proven by experiment (E5) whose approach is
described in Section IV-B Red-Black Tree and results
are illustrated in Section V-B Red-Black Tree and Figure
12.

(C6): We demonstrate the improvements of using the struct-
agnostic and hardware-agnostic amplification approaches
with flushing the CPU caches and appending additional
elements. This is proven by experiment (E6) whose
approach is described in Section V-A and results are
illustrated in Table I.

E. Evaluation

As described in Section V-B External Noise, the most dom-
inant noise source is CPU frequency fluctuation. Therefore,
perform the following experiments with as little background
activity as possible to reproduce the figures from the paper.
We even suggest to perform the experiments on an idle system
with no other activity.
(E1): POSIX timer hash table experiment [10 human-seconds

+ 30 compute-seconds]:
[How to] Execute ./posix_timers_hashtable.elf

<struct_agnostic_amp> <core> <file_name>,
with <struct_agnostic_amp> is a boolean which
performs the experiment with/without structure-
agnostic amplification, <core> pins the process
to the specific core, and <file_name> stores the
results in this file. For convenience, we provide the
eval_posix.sh script which internally executes
posix_timers_hashtable.elf with and without
structure-agnostic amplification. To reproduce Figure
8, execute ./print_hist.py -f <file_name>,
where <file_name> is either posix_ht_amp.csv or
posix_ht_no_amp.csv.
[Preparation] Do Section A-C1.
[Execution] ./eval_posix.sh and ./print_hist.py

-f <file_name>, where <file_name> is either
posix_ht_amp.csv or posix_ht_no_amp.csv.
[Results] print_hist.py should reproduce Figure 8.

(E2): Futex hash table experiment [10 human-seconds + 30
compute-seconds]:
[How to] Same as for (E1) but with futex_hash_ta-

ble.elf and eval_futex.sh.
[Preparation] Do Section A-C1.
[Execution] ./eval_futex.sh and ./print_hist.py

-f <file_name>, where <file_name> is either fu-

tex_ht_amp.csv or futex_ht_no_amp.csv.
[Results] print_hist.py should reproduce Figure 9.

(E3): IPC hash table experiment [10 human-seconds + 30
compute-seconds]:
[How to] Same as for (E1) but with ipc_ids_key_-

ht.elf and eval_ipc_ht.sh.

[Preparation] Do Section A-C1.
[Execution] ./eval_ipc_ht.sh and ./print_hist.py

-f <file_name>, where <file_name> is either ipc_-
ht_amp.csv or ipc_ht_no_amp.csv.
[Results] print_hist.py should reproduce Figure 10.

(E4): IPC radix tree experiment [10 human-seconds + 30
compute-seconds]:
[How to] Same as for (E1) but with ipc_ids_ipcs_-

idr_root_rt.elf and eval_ipc_rt.sh.
[Preparation] Do Section A-C1.
[Execution] ./eval_ipc_rt.sh and and ./print_-

hist.py -f <file_name>, where <file_name> is ei-
ther ipc_rt_amp.csv or ipc_rt_no_amp.csv.
[Results] print_hist.py should reproduce Figure 11.

(E5): Hrtimer red-black tree experiment [10 human-seconds
+ 30 compute-seconds]:
[How to] Similar as for (E1) but with hrtimer_bases_-

clock_base_active.elf and eval_hrtimer_rbt.sh,
and print_hrtimer.py.
[Preparation] Do Section A-C1.
[Execution] ./eval_hrtimer_rbt.sh and
./print_hrtimer.py hrtimer_rbt_no_amp.csv

hrtimer_rbt_amp.csv.
[Results] print_hrtimer.py should reproduce Figure
12.

(E6): Amplification improvement experiment [10 human-
seconds + 10 compute-seconds]:
[How to] Execute eval.py prints similar results to Table
I in ASCII form.
[Preparation] Do Section A-C1 and Experiments (E1-5).
[Execution] ./eval.py.
[Results] eval.py should reproduce Table I.

20

