THE DOOM OF DEVICE DRIVERS:
Your Android Device (Most Likely) has N-Day Kernel Vulnerabilities

Lukas Maar
Graz University of Technology

Lorenz Schumm
Graz University of Technology

Abstract

Android’s security landscape is constantly evolving to counter
increasingly sophisticated attacks, with the kernel as a prime
focus. Past device compromises required complex exploit
chains pivoting to privileged contexts before targeting the
kernel. Recently, however, the trend has been to exploit kernel
GPU drivers accessible to untrusted apps to bypass privileged
pivoting. While significant efforts have been made to secure
GPU drivers, the broader risks of untrusted apps compromis-
ing Android devices remain underexplored at a large scale.

In this paper, we perform the first comprehensive analy-
sis of kernel drivers accessible to untrusted apps on a rep-
resentative set of 131 Android devices. Using our mostly
automated approach to recover access control policies from
device firmwares, we identify a significant attack surface be-
yond GPUs, comprising 11 drivers. From public information
about these drivers, such as git repositories, we reconstruct
50 known vulnerabilities, including highly critical issues that
allow exploit primitives such as use-after-free and out-of-
bounds writes. Our subsequent vulnerability patch inclusion
analysis reveals that many of these vulnerabilities remain
unpatched, acting as n-days at the time of analysis' or for
extended periods: More than 59 % of the analyzed devices
can be exploited by highly critical n-day vulnerabilities.

We uncover novel insights into the disparity in patch time-
lines and vendor practices. Our findings show that malicious
actors can exploit n-day vulnerabilities accessible to untrusted
apps, bypassing the need for complex zero-day vulnerabili-
ties. We conclude that urgent action must be taken to improve
overall Android security.

1 Introduction

In today’s interconnected world, mobile phones are essen-
tial to daily life, with Android powering billions of devices.
Ensuring their security is critical, as compromises can allow
surveillance, expose sensitive data, or enable identity theft.

'December 2024: time of analysis.

Ermesto Martinez Garcia
Graz University of Technology

Florian Draschbacher

Graz University of Technology and A-SIT Austria

Stefan Mangard
Graz University of Technology

With increasingly sophisticated attacks, timely vulnerability
identification and mitigation are becoming more critical.

Past full Android device compromises required complex ex-
ploit chains, as Android tightly restricts the kernel attack sur-
face exposed to most apps. Consequently, these exploit chains
often pivoted through elevated processes before targeting the
kernel. For example, a 2022 attack detailed by Google Project
Zero [27] began with remote code execution in Chrome. Like
most apps, Chrome runs in an untrusted security context with
only a limited kernel attack surface. The attack exploited a
system service vulnerability to gain system privileges, increas-
ing the reachable kernel attack surface. Finally, with system
privileges, it targeted a kernel sound driver vulnerability for an
arbitrary read/write, enabling device compromise. Such full
chains are commonly used to secretly install spyware—Ilike
Pegasus [22] or the newly discovered NoviSpy [23]—which
is eventually used for surveillance [76].

However, recent kernel attacks bypass the need for com-
plex chains. Experts [8, 14, 16—18,56-58,73,75,76, 84, 87]
highlighted that GPU drivers are directly accessible from un-
trusted contexts. Hence, full-chain exploits are now targeting
the GPU directly from untrusted apps, eliminating the need for
privilege pivoting. This strategy shift has made GPU drivers
prime targets. With four GPU suppliers covering the entire
Android market—ARM Mali, Qualcomm Adreno, Samsung
Xclipse, and Imagination Technologies PowerVR—a single
vulnerability in any of the drivers can impact a wide range of
devices. Additionally, the inherent complexity of GPU drivers
made them particularly susceptible to vulnerabilities.

Google’s 2023 annual review [76] underscored this, attribut-
ing 4 of 5 device compromises to GPU driver vulnerabilities,
with only 1 involving the core Linux kernel. In response,
Google has prioritized GPU security [87], collaborating with
the Android Red Team and ARM to enhance GPU vulnerabil-
ity detection, mitigation, and hardening. This raises a critical
question: Are GPUs the sole attractive target for malicious
actors, or do other kernel components pose similar or even
greater risks that have yet to be addressed comprehensively?

In this paper, we comprehensively analyze the kernel attack

surface accessible to untrusted apps and show that multiple
kernel drivers remain vulnerable to n-day exploits, i.e., ex-
ploiting vulnerabilities that remain unpatched despite fixes
being known. At the time of our analysis, 59.1 % of recent
Android devices in our representative set can be exploited
by highly critical n-day flaws, with 61.4 % affected by vul-
nerabilities of any severity. Highly critical flaws include Use-
After-Free (UAF) [49, 60, 86] and Out-Of-Bounds (OOB)
writes [9, 84], while moderate ones include Uninitialized Vari-
ables (UV) [11, 38, 47] and Information Disclosures (ID)
[43,44,48]. Our findings show that these n-day driver vulnera-
bilities are even more attractive targets than GPU ones, as they
are similarly accessible from untrusted apps and affect mul-
tiple devices but remain unpatched for extensive time. Mali-
cious actors can, therefore, exploit these n-day vulnerabilities
without needing to find zero-day vulnerabilities. By highlight-
ing this gap, we envision improving the security maintenance
of device drivers and ultimately enhancing Android security.
To achieve this, we perform three analyses: First, we ana-
lyze the kernel attack surface of drivers accessible to untrusted
apps. Second, we reconstruct vulnerabilities in these drivers
using public information. Third, we evaluate the vulnerability
patch inclusion, which indicates the prevalence of n-days.
For the kernel attack surface analysis, we present a mostly
automated approach for extracting access control data from
device firmwares. This method recovers Linux’s user-group-
based access control and SELinux’s policies, which form the
fortified environment isolating security domains [2,54]. Using
this, our approach identifies kernel drivers accessible from
untrusted security contexts, where most apps run. We analyze
493 firmwares from the most recent 131 devices of 7 OEM
vendors (Samsung, Xiaomi, Asus, Realme, OnePlus, Oppo,
and Vivo). These OEMs represent more than 75 % of An-
droid’s market share. Our results show that, apart from GPUs,
11 drivers are accessible from untrusted contexts, including
components like the DSP, JPEG decoder, and Al coprocessor.
For driver vulnerability reconstruction, we collect publicly
available git repositories and bug reports for 7 of the 11 drivers
from two chipset ODM vendors (Qualcomm and MediaTek),
covering low- to high-end devices. We then reconstruct 50
vulnerabilities from the last 4 years by searching for security-
relevant keywords and manually identifying security patches.
For the patch inclusion, we semi-automatically detect the
absence of patches for 21 of our 50 identified vulnerabilities.
Analyzing 493 firmware images across multiple OEM ven-
dors, we find that many vulnerabilities remain unpatched for
extended periods, some exceeding one year, while others are
still unpatched at analysis time. Notably, 61.4 % of devices
are affected by at least one known vulnerability, with 59.1 %
exposed to highly critical issues. We support n-day exploitabil-
ity by triggering 5 such n-day vulnerabilities from the DSP
driver on a real device, highlighting cross-OEM susceptibility.
We present 5 key findings: First, if a driver contains one
n-day vulnerability, it is highly likely to contain more. For ex-

ample, 71.4 % of our Xiaomi devices have at least one, while
49 % contain three or more. Second, OEMs primarily address
vulnerabilities by releasing new devices rather than issuing
updates for existing ones. Third, patch delays vary widely
across OEMs, ODMs, and vulnerability types, with OOB ex-
periencing the fastest patch inclusion, followed by UAF and
ID. When comparing ODMs, MediaTek devices are more
than 2 times slower to receive patches than Qualcomm de-
vices. Fourth, n-day proof-of-concept exploits targeting these
drivers are versatile and can be reused across OEMs. Fifth,
the presence of n-day vulnerabilities in drivers accessible to
untrusted apps enables exploitable pathways, reducing the
need for time-consuming zero-day development.

In conclusion, our findings highlight the urgent need for
stronger defensive measures in Android security, especially as
concurrent research [23,24,33] reveals that malicious actors
actively exploit accessible drivers in the wild.

Contributions. The main contributions of this work are:

(1) Comprehensive Kernel Attack Surface Analysis: We
present the first comprehensive analysis of kernel drivers
accessible to untrusted apps, identifying a broader attack
surface beyond GPU drivers, comprising 11 drivers.

(2) Reconstruction of Kernel Vulnerabilities: We recon-
struct 50 vulnerabilities, including high-critical issues
like use-after-free and out-of-bounds writes, showing the
prevalence of exploitable vulnerabilities in drivers.

(3) N-Day Patch Inclusion Analysis: We conduct a semi-
automated analysis that reveals significant patch delays,
with 59.1 % of devices vulnerable to high-critical n-day
exploits, demonstrating persistent security gaps.

(4) Insights into Vulnerability Trends: We uncover that
n-day kernel driver vulnerabilities are more attractive to
malicious actors than GPU vulnerabilities and highlight
disparities in patch timelines and vendor practices.

Qutline. Section 2 provides background. Section 3 shows
the high-level overview. Section 4 presents the kernel attack
surface analysis to untrusted apps. Section 5 reconstructs
vulnerabilities. Section 6 detects patches, showing multiple
vulnerabilities act as n-days. Section 7 discusses security
implications and related work. Section 8 concludes our work.

2 Background

This section covers the kernel exploitation terminology,
Generic Kernel Image (GKI) project, Android’s access con-
trol, and full-chain exploits targeting Android devices.
Kernel Exploit Terminology. We refer to exploit-specific
definitions from prior work [6,48]. A zero-day exploits a zero-
day vulnerability before it is publicly disclosed or patched,
while an n-day targets an n-day vulnerability, a known secu-
rity issue with existing patches or mitigations that may not
yet be applied. A full exploit chain consists of multiple stages
that typically exploit a messenger [25,61] or browser [27]
and progress to the kernel with intermediate stages, ultimately

compromising the device. Exploit primitives are basic capa-
bilities obtained through vulnerability exploitation (e.g., out-
of-bound writes), and exploit techniques convert primitives
into more impactful outcomes (e.g., an arbitrary read/write).

Generic Kernel Images and Kernel Drivers. The An-
droid OS is based on the Linux kernel, which faced challenges
adapting to different devices. Before the GKI project [4],
OEM vendors maintained product kernels for each device
model, derived from the upstream Android Linux kernel and
heavily modified. The wide range of devices resulted in a
large number of product kernels and kernel fragmentation,
which had negative security consequences. These include sig-
nificant delays in rolling out security-critical updates—also
highlighted by prior work [10, 35, 64, 89, 95]—or difficulty
in merging upstream changes. To counter this trend, Google
initiated the GKI project [4]. With GKI 1.0, introduced in An-
droid version 11, devices running 5.4 kernels must pass GKI
tests., i.e., from the compatibility test suite. With GKI 2.0,
devices running 5.10 or later kernels must ship with the GKI
kernel maintained and built by Google. GKI 2.0 has security
benefits, as these kernels are updated with long-term stable
changes and critical bug fixes, resolving the kernel fragmen-
tation issue. To compensate for device customization, OEMs
now rely on introducing customization via kernel modules.

SELinux and Android’s Access Permissions. Android
combines Linux’s user-group-based access controls with
Security-Enhanced Linux (SELinux)’s mandatory policies,
creating a fortified environment where different security do-
mains are isolated [2, 54]. This reduces the risk of malicious
interference and enhances the overall system security.

Linux offers Discretionary Access Control (DAC) for man-
aging file system permissions so that users cannot alter or
access other users’ resources, which Android uses to iso-
late applications from each other. Each app runs under its
own Linux user, and files created by one app cannot be ac-
cessed by other apps unless explicitly granted permission to
share. For more fine-grained access control, Android estab-
lishes Mandatory Access Control (MAC) on processes with
SELinux. SELinux offers this by integrating into the Linux
Security Module (LSM) framework and using syscall hooks
and policies to enforce access control decisions. The system
follows a default-denial principle, allowing only explicitly per-
mitted actions. It operates in permissive or enforcing mode,
where, per default, Android runs in enforcing mode.

SELinux policies define rules for allowing actions by a
particular object on a specific subject. The subject is com-
monly a set of processes that run in the same security domain,
also called a security context. On Android, the untrusted secu-
rity context (i.e., untrusted_app) is the domain assigned to
third-party applications installed from the Google Play Store
or other sources. It ensures that apps are restricted from per-
forming unauthorized actions or accessing sensitive system
resources, e.g., most of the kernel and its drivers. This context
prevents apps from directly interacting with other applica-

tions, enforcing strict boundaries unless explicitly permitted
by mechanisms like Inter-Process Communication (IPC), e.g.,
through Android’s binder IPC. In addition to untrusted_-
app, Android defines other SELinux contexts for different
types of apps or system components, such as system_app
for privileged apps. The SELinux policies for each context
ensure that processes operate within predefined boundaries,
minimizing security risks and maintaining system integrity.

3 High-Level Overview

This section provides an overview of our work, first high-
lighting how past full-chain exploits have primarily targeted
Android devices. While prior attacks typically exploited well-
studied vulnerabilities in GPU drivers or the kernel alongside
privileged process exploitation, we analyze alternative, under-
explored attack surfaces for large-scale root compromise.

Prior Exploitation Chains. Full-chain Android exploits
(see Figure 1a) typically achieve code execution in an un-
trusted security context by exploiting vulnerabilities in an
application [73, 75, 76], such as browsers [27] or messen-
gers [25,61]. With code execution, these exploits have typi-
cally followed one of two pathways to root, compromising
the device: First, the attack targets a vulnerability in a higher-
privileged process, allowing it to elevate from the untrusted
to the higher-privileged security context, e.g., the system con-
text. This escalation significantly increases the kernel attack
surface. With higher privileges, the attack then exploits one or
more kernel vulnerabilities that are accessible from this con-
text [27,36,46,72], such as the io-uring subsystem [46] or
the higher-privileged sound device drivers [27]. Second, the
attack targets one or more vulnerabilities that are accessible
from the reduced kernel attack surface within the untrusted
context. In this case, malicious actors mainly focus on vul-
nerabilities in the GPU driver. In fact, according to Google’s
annual report in 2023 [76], GPU drivers were targeted by 4
out of 5 full-chain exploits, with one taking the first pathway.

From an attacker’s perspective, both approaches face a sim-
ilar problem: Security researchers are aware of them and have
made significant advances in suitable detection and mitigation.
For instance, collaborative efforts by Google, the Android Red
Team, and ARM have substantially enhanced the security of
Android GPU drivers [87]. These improvements have largely
concentrated on GPU driver vulnerabilities, leaving other ker-
nel components less explored and vulnerable.

Presented Exploitation Chains. In contrast to the past
focus on GPU drivers, we identify and analyze alternative
kernel components as equally—if not more—critical exploit
targets (see Figure 1b). We show that these components meet
the following generalized criteria for exploitation:

C1: Accessibility. The target kernel component is directly
accessible from untrusted security contexts.

C2: Broad Impact. A vulnerability in the target component
can affect a wide range of Android devices.

Kernel User
leruE Graphic driver @ Untrusted App
&, ¥k el
asns System Service \
i Sou% Controller ?9? » 1
S ¥

Kernel User
& D SP driver @ Untrusted App
SEE S ATNE . A1
g JPl:?&driver — .
- . N
.. . . - . \
-...-... . {‘%}@ ;S')‘xl(’/n Service ‘II
i m Aﬁriver Lo’
A SR .-

(a) Prior Exploitation Chains: Attack directly the graphics driver (b) Presented Exploitation Chains: Attack directly kernel drivers

from an untrusted or the kernel from a system security context.

which are accessible from an untrusted security context.

Figure 1: Exploitation chains of attacking Android devices to get full root.

C3: Susceptibility. The target is highly susceptible to includ-
ing unintentionally exploitable vulnerabilities.

In Section 4, we present a mostly automatic approach to iden-
tify other components accessible from untrusted contexts. Our
findings reveal that beyond GPUs, 11 device drivers, such as
those for the Digital Signal Processor (DSP), JPEG decoding
accelerator, and Artificial Intelligence (AI) coprocessor, meet
C1. In Section 5, we perform a semi-automated analysis to
find n-day vulnerabilities by inspecting publicly available git
repositories and bug reports. We identify 50 vulnerabilities
within 7 device drivers that affect a wide range of devices,
satisfying C2. In Section 6, we reveal that many identified n-
day vulnerabilities remain unpatched for an extensive amount
of time or unpatched till December 2024, i.e., the date of
the analysis. This leaves 61.4 % of devices vulnerable, with
59.1 % exposed to highly critical vulnerabilities. The lack of
n-day patches eliminates the need for the time-consuming
discovery of complex zero-days, satisfying C3.

Threat Model. In our threat model, we assume a mali-
cious actor who has already achieved code execution in an
untrusted security context, e.g., by exploiting an application
like Chrome. The malicious actor’s goal is to compromise
the device’s kernel and take full control of the device with
minimal effort and resources. Given the time and resource in-
tensity of discovering zero-day vulnerabilities, the malicious
actor aims for alternative pathways, including the exploitation
of n-day vulnerabilities. This aligns with the expectations of
real-world Android exploitation [27,53, 68,70, 72].

Collection and Extraction of Firmwares. We automati-
cally collect firmwares not protected by captchas and manu-
ally collect those that are protected by captchas. We imple-
ment a web crawler based on Python Selenium to download
firmwares from different points in time where possible. We
consider 7 OEM vendors, accounting for more than 75 % of
the Android market [5]. These OEMs comprise the top 5
(Samsung, Xiaomi, Vivo, Oppo, Realme) as well as 2 well-
recognized (OnePlus, Asus), and use the chipset of 3 ODM

vendors (Qualcomm, MediaTek, Samsung). We consider de-
vices of OEMs released between October 2022 and Decem-
ber 2024 (completion of the analysis). Our focus lies on re-
cent devices as these are more likely to receive security up-
dates [1,48,95]. Overall, we collect and extract 493 firmwares
for 131 Android devices which is a representative sample of
the 488 devices produced in this time span. For Samsung and
Xiaomi, our collection includes version lineages, i.e., multiple
different firmware versions for the same device.

4 Attack Surface Analysis of Android Kernels

This section conducts a large-scale analysis to identify the ker-
nel attack surface accessible for the untrusted security context.
This involves generalizing Android’s approach to minimizing
the kernel attack surface and detailing how this information
can be extracted from device firmwares (see Section 4.1).
Using this approach, we analyze the kernel attack surface of
493 firmwares (see Section 4.2). We show that this surface
includes multiple kernel devices, satisfying criteria C1. To
validate these findings, we perform dynamic access tests (see
Section 4.3) by implementing an application in the untrusted
context to confirm access to the previously identified drivers.

4.1 Determining the Minimum Kernel Attack
Surface

To determine the kernel attack surface accessible to untrusted
contexts, we address two key questions: What kernel compo-
nents are potential attack targets, and which are accessible
to unprivileged apps? We focus on device drivers, the most
vulnerable part of the kernel [7,52]. Hence, to determine the
attack surface of kernel drivers, we need the drivers them-
selves and each access permission.

Prior to GKI 2.0, these kernel drivers were typically in-
cluded in the kernel binary. However, starting GKI 2.0, OEMs

N

ey

Char devices

Char Devices

Accessible

Determine Accessible char devices

SELinux
policies

® Fun

Determine Accessible scripts
Contexts

B \
> =N

—o

Match Char Drivers) l

Kernel A Kernel Attack
Surface

drivers

Proc devices

Section 4.1.1

Section 4.1.2

oms

Match Proc Drivers)

Section 4.1.3

Figure 2: High-level workflow for determining the kernel attack surface from SELinux policies, Linux permissions and drivers.

were forced to use the generic Android kernel image, imply-
ing that ODM-specific drivers are no longer included in the
binary. Instead, they are loaded as kernel modules typically
during boot. The storage locations of these drivers embedded
within the device’s firmware vary and depend on the OEM and
model. After obtaining the drivers, we determine which are
accessible to untrusted security contexts. To achieve this, we
extract two access control data from the firmware: SELinux
policies and user-group-based Linux permission settings, both
defining the access to these drivers.

Figure 2 illustrates our high-level workflow for determining
the kernel attack surface by analyzing the SELinux policies
(in Section 4.1.1) and the Linux permission settings (in Sec-
tion 4.1.2) to find the matching kernel drivers accessible by
unprivileged security contexts (in Section 4.1.3).

4.1.1 Analyzing SELinux Policies

To reconstruct SELinux access control policies, two config-
uration files are critical [3]: The precompiled policies (i.e.,
precompiled_sepolicy), which configure allowed access
of SELinux contexts to specific domains; and the domain
mappings (i.e., vendor_file_contexts), which assign file
paths to domains. Together, they allow the identifying actions
of a SELinux context to be performed on a file at a given path.
Depending on the device, the configurations are stored in three
possible locations for precompiled_sepolicy and two for
vendor_file_contexts, e.g., /etc/selinux in partition
odm or vendor. Our approach extracts these policy-related
files for subsequent analysis. We then use the official SELinux
policy query tool, sesearch, to obtain access control rules
for character devices from untrusted contexts.

Character Devices. Android’s hardware resources are
typically managed by kernel drivers that expose higher-
level functionality to user space via character device files.
These character devices usually mount virtual files in the
/dev directory. User-space apps can interact with them
via syscalls like open and ioctl. To find character de-
vices accessible in the unprivileged untrusted_app con-
text, we execute queries against precompiled_sepolicy.

1 allow appdomain vendor_qdsp_device:chr_file { ioctl read };
allow domain zero_device:chr_file { append getattr ioctl lock
map open read watch write };

3 allow untrusted_app gpu_device:chr_file { append getattr
ioctl lock map open read watch write };

4 allow untrusted_app sound_device:chr_file { append getattr
ioctl lock map open read watch watch_reads write T

5 allow untrusted_app_all untrusted_app_all_devpts:chr_file {
getattr ioctl open read write };

)

Listing 1: SELinux access control for untrusted_app on
Xiaomi Redmi Note 14 Pro+.

1 /dev/kgsl
2 /dev/adsprpc-smd
3 /dev/xlog

u:object_r:gpu_device:s0
u:object_r:vendor_qdsp_device:s0
u:object_r:sound_device:s0

Listing 2: Mounting points for domains accessible to
untrusted_app on Xiaomi Redmi Note 14 Pro+.

For instance: sesearch -allow -s untrusted_app -c
chr_file -p ioctl precompiled_sepolicy finds all
character devices accessible via the ioctl syscall. Listing 1
illustrates a simplified SELinux policy output by sesearch
on the Xiaomi Redmi Note 14 Pro+. It shows domain-specific
permissions, which control resource access for processes run-
ning with the untrusted_app context. The appdomain (a
context despite its name) covers most Android apps (includ-
ing untrusted_app) and, in this example, can access files
in the vendor_qdsp_device domain. The broader domain
(a confusingly named context that comprises all processes on
the device) is granted permission on the zero_device do-
main. The untrusted_app context, a subset of appdomain,
has stricter controls but full access to gpu_device. The more
restrictive untrusted_app_all context allows access to un-
trusted_app_all_devpts on the specific firmware.
SELinux policy only allows us to learn about access to
domains, e.g., vendor_qdsp_device. To resolve these do-
mains to mounting points of a character device within the
/dev directory, we use the vendor_file_contexts. List-
ing 2 illustrates the content of vendor_file_contexts rel-
evant to recover the device’s mounting point. For instance,

1 allow appdomain appdomain:binder { call transfer };
2 allow appdomain appdomain:fd use;

Listing 3: Transfer from untrusted_app to platform_app.

the mounting point for the vendor_qdsp_device domain is
/dev/adsprpc on Xiaomi Redmi Note 14 Pro+.

ProcFS Files. The Process File System (ProcFS) pro-
vides an alternative mechanism for interacting with kernel
device drivers [29]. Kernel drivers can expose user-space
interfaces by creating virtual files using the proc_create
kernel function, which takes the file name and access permis-
sions as arguments. Accessing these files through syscalls
prompts its kernel driver functions, enabling communication
between the user and kernel. Similar to character devices,
we use sesearch to find the access permissions for ProcFS
files. However, we do not need vendor_file_contexts,
as their domain names already contain the path, e.g., al-
low appdomain proc_ged:file {...} refers to the path
/proc/ged.

Pivoting Contexts. As observed in Listing 1, permissions
for character devices vary. For instance, while zero_device
permits mapping, vendor_qdsp_device does not. SELinux
policies may allow certain operations (e.g., ioctl) on a file
but restrict others, such as opening (e.g., vendor_qdsp_de-
vice). This limitation can be bypassed by legally pivoting to
contexts with open permissions for the file [21, 33], avoiding
the need for a vulnerability. To identify pivoting contexts, we
query contexts that allow the target device to be opened and
locate transitions from untrusted_app to those contexts.
This allows transitioning to a context that can share device
references with untrusted_app. For example, we identified
platform_app and vendor_dspservice as pivoting con-
texts that enable interaction with vendor_qdsp_device.

Listing 3 illustrates these transfers. Line | permits appdo-
main (including untrusted_app) to use Android’s Binder
IPC for calls and data transfer between appdomains, e.g.,
platform_app. Line 2 permits shared file descriptors, en-
abling untrusted_app to access resources used by plat-
form_app. Thus, Binder IPC and shared file descriptors allow
untrusted_app to open access vendor_qdsp_device.

4.1.2 Analyzing Linux Permission Settings

Linux executes Run Control (RC) scripts during startup to set
up services and configs, including permissions. These scripts
use commands like chmod and chown to define user-group-
based permissions to read, write, and execute for files and
devices. For character devices, the permissions are typically
set based on predefined policies in scripts or config files.

We implement an approach that extracts all found RC
scripts (in /etc/ or /etc/init) to examine these permis-
sion settings. We mark a character device as accessible if
the RC permissions permit it to unprivileged others users,

and a SELinux policy rule allows access to unprivileged
contexts. There are cases where only one is true. For in-
stance, SELinux’s access control allows the ioctl syscall
on /dev/sdsprpc-smd while its permissions is 0660 sys-
tem: systemn, indicating that only the system user/group has
read/write access to this device but no unprivileged others
user. Another example is /dev/elliptic, which has 0644
system: system permissions, but no SELinux access control
rule allows access to it from the untrusted_app context.

4.1.3 Matching Kernel Drivers

Since GKI 2.0, OEMs are forced to use the Google-
maintained GKI kernel and are required to move kernel drivers
to external modules. There are 2 possible locations of kernel
drivers, either in the vendor_dlkm partition or compressed
inside a ramdisk stored within the vendor_boot partition.
Android uses a ramdisk to initialize the system before mount-
ing the main file systems. A ramdisk is a temporary file sys-
tem loaded into RAM during the boot process. The driver
extraction varies depending on the storage: If drivers are lo-
cated within vendor_d1lkm, we mount the partition and copy
the drivers for further analysis. Extraction from the ramdisk
requires decompressing the disk image, then extracting the
drivers from the ASCII cpio archive using a tool like bin-
walk. binwalk extracts a file system from the cpio archive,
storing the drivers in /vendor or /vendor_dlkm.

With the reconstructed driver modules and the list of acces-
sible device nodes in the file system, we match each device
node—either in /dev or /proc—to its driver. Our approach
depends on the device node’s mounting point. For /dev, we
automatically match the file name (e.g., adsprpc-smd) with
all strings contained in kernel modules. We then manually
verify the mapping by comparing it with the driver’s source
code. For /proc, we automatically scan driver modules for
the file name (e.g., jpeg_driver) and the proc_create_-
file symbol. We then manually inspect the identified kernel
module and its source code. This verifies the mapping and con-
firms that the mode argument passed to proc_create_file
renders the device node accessible to untrusted contexts.

By combining these methods, we establish a mapping of
each mounting entry to its corresponding kernel driver. To
ensure that these drivers are loaded at startup, we verify that
the matched module appears in the modules . load file, which
lists all kernel modules to be loaded automatically.

4.2 Large-Scale Analysis

This large-scale analysis is a fully automated process to de-
termine all kernel drivers that are accessible to untrusted
contexts. The manual preprocessing phase, outlined in Sec-
tion 4.1, serves as an initial phase for this automated analysis,
where we map each driver’s entry point to its correspond-
ing kernel module. The automated process analyzes SELinux

Table 1: Accessible kernel attack surface from the untrusted security contexts, showing the percentage of devices per OEM

vendor permitting access to the corresponding kernel driver.

Category Device Driver’s Entry Module Accessibility per OEM Vendors

Samsung Xiaomi Asus Realme OnePlus Oppo Vivo
Al /dev/apuext apusys.ko 2 12 12 29 40
DSP /dev/adsprpc-smd frpc-adsprpc.ko 48 52 83 56 71 43 40
DSP /dev/fastrpc-[acsldsp frpc-adsprpc.ko 10
NPU /dev/vertex npu.ko 38
Al /dev/apusys apusys.ko 4
Audio /dev/xlog xlogchar.ko 60
GPU Extention /proc/ged ged.ko 14 38 17 38 29 57 60
Monitor /proc/perfmgr mtk_perf_ioctl.ko 7 38 17 38 29 57 60
JPEG /proc/mtk_jpeg jpeg-driver.ko 2 25 17 14 29 40
Memory /proc/secmem trusted_mem.ko 12 25
Monitor /proc/mi_log mi_log.ko 21
Camera /proc/camera camera.ko 10

policies, Linux permission settings, and kernel drivers across
493 firmware versions of 131 Android devices from 7 OEMs.
This analysis determines drivers that untrusted contexts can
access. Table | presents the results, highlighting the extent
of the kernel attack surface across OEMs. These findings re-
veal that multiple drivers are accessible and that most remain
accessible across OEMs, satisfying C1.

Table | categorizes the accessible kernel drivers based on
their intended functionality (derived from modinfo) and lists
their entry points and module names. For each OEM and
driver module, the table indicates the percentage of devices
permitting access or, if access is absent, leaves the cell blank.
The most contributing reason for inaccessibility is the lack of
hardware support for the corresponding software driver mod-
ule. For instance, the npu. ko driver is found exclusively on
Samsung-ODM devices, present in 38 %. Another less domi-
nant contributing factor to variability in access is hardware
support combined with device-specific access permission set-
tings. For example, while the apusys . ko driver is included
in devices from Xiaomi, Oppo, OnePlus, and Realme, only a
subset of Xiaomi devices allows access to untrusted contexts.

Device configurations show mutually exclusive driver
sets based on the ODM chipset. For example, Xiaomi
devices are either Qualcomm- or MediaTek-based, lead-
ing to Qualcomm drivers such as /dev/adsprpc-smd or
/dev/fastrpc-[acs]ldsp, or MediaTek drivers such as
ged.ko and mtk_perf_ioctl.ko. This pattern extends to
other OEMs. Among Xiaomi’s MediaTek devices (38 % of
the lineup), about 65 % include the jpeg-driver.ko driver.
Those findings highlight the nuanced variability in kernel
driver accessibility across devices, ODMs, and OEMs.

4.3 Validity of Analysis

Our analysis relies on static interpretation of kernel drivers,
SELinux policies, and RC scripts, all of which contribute to
driver accessibility from unprivileged contexts. To verify the
validity of our statically determined results, i.e., to confirm

they reflect behavior on real devices, we perform dynamic
testing on a representative subset of Android devices. We
pick 15 devices from 4 OEM (Samsung, Xiaomi, Vivo, Oppo)
and 3 ODM vendors, reflecting the 4 most popular Android
OEMs by market share [5]. To span the performance spectrum,
we test 3 Samsung models (S24 Ultra, A55, A14), and the
Xiaomi Redmi 12, Vivo Y36, and Oppo ASS8. Additionally, we
validate driver accessibility on nine more Samsung devices
via the Remote Test Lab. In total, our test set includes 5
Qualcomm-based, 6 MediaTek-based, and 4 Samsung ODM.

To determine device driver interfaces accessible from un-
trusted contexts at runtime, we implement an unprivileged
Android application. It attempts to invoke a series of syscalls
on each file in /dev/ or /proc/ whose accessibility we
wish to determine. These syscalls are open, close, read,
write, ioctl, fgetxattr, mmap and flock, representing
SELinux’s access permissions (see Listing 1). We consider a
file as accessible if the syscall yields success or the resulting
error code does not indicate a lack of permission. Listing
the contents of /dev/ or /proc/ from an untrusted context,
such as our test app, may be forbidden, even if access to the
contained files is possible. Hence, we list directory contents
as the higher-privileged shell user. We pass the obtained list
of files to our unprivileged app to test the syscalls. For some
subfolders of /dev/ or /proc/, not even the shell user may
list contents. As this only affects a small number of paths
across all firmwares, we hardcoded them into the app.

For all evaluated devices, the results of our static analysis
align with those obtained at runtime. Hence, we conclude that
our large-scale results estimate real devices.

S Analysis of N-Day Vulnerabilities

In this section, we present a systematic analysis of n-day vul-
nerabilities. These are security flaws that have been publicly
disclosed and have available patches but remain unpatched on
devices. While some security flaw sources—such as public

vulnerability disclosures [87] and write-ups [58]—explicitly
reveal the nature of the flaw, others—such as Security Bul-
letins from Google or Qualcomm—provide less direct infor-
mation, making the identification process more complex.

A notable observation in our analysis is that most publicly
available write-ups and vulnerability disclosures focus dispro-
portionately on GPU driver vulnerabilities [18,55-58, 76, 87].
This focus has led to significant progress in understanding and
addressing GPU-related security issues. However, it has also
created a gap in public knowledge about exploiting vulnera-
bilities in other types of drivers, e.g., other drivers accessible
from untrusted contexts. To address this imbalance and ensure
a broader vulnerability exploitation coverage, our approach
extends beyond GPU drivers and analyzes driver-specific vul-
nerabilities. We achieve this by identifying vulnerabilities
using a history tree search across different drivers. Through
this analysis, we successfully identify 50 vulnerabilities, de-
tailed in Table 2. Section 6 then shows that multiple of these
vulnerabilities are either n-days at the time of analysis or
for extended periods. By showing that each of these n-day
vulnerabilities affects multiple devices, it meets C2.

5.1 N-Day Vulnerability Identification

Android adheres to a strict open-source policy to ensure trans-
parency and encourage collaboration within the security com-
munity. This includes maintaining public access to bug re-
ports and releasing kernel modifications. While this open-
ness empowers security researchers to identify, analyze, and
address potential vulnerabilities, it also provides malicious
actors with the means to identify n-day vulnerabilities.

To identify such n-day vulnerabilities, bug reports can po-
tentially serve as a direct source of information. Ideally, these
reports should only be publicly available after the associated
vulnerabilities have been patched in all systems, including
downstream versions. However, in practice, they typically
become public after exceeding the disclosure deadline or fol-
lowing a grace period after a patch is released. Google Project
Zero, for instance, follows a 90+30 disclosure deadline policy.
If a patch is released within a 90-days time period, details
are disclosed 30 days later. If no patch has been released, the
reports are publicly disclosed after 90 days.

Bug reports can be generalized into two categories: First,
vulnerability disclosures reveal official disclosure informa-
tion, which provides detailed vulnerability descriptions. Ex-
amples include CVE-2022-22706/CVE-2021-39793 [20] and
issue trackers highlighting CVE-2024-23384 [92] and CVE-
2024-23698 [12]. Second, exploit write-ups and analyses en-
compass publicly available exploit details contributed by the
security research community. Examples include works by
Mo [55-58] and studies of zero-day and n-day vulnerabilities
found in the wild, e.g., done by Google Project Zero [29]. As
described above, both categories of bug reports provide direct
information about vulnerabilities and, if not patched, offer the

1 commit 2466bcf3cea4ded9b37b7e8983e7e6b7ffd92e8fc
2 Author: quic_anane <quic_anane@quicinc.com>

3 Date: Tue Jul 16 23:37:45 2024 +0530

4

msm: ADSPRPC: Avoid Out-0f-Bounds access

Currently, when adding duplicate sessions to an array that

5
6
7
8 holds session information, no check is performed to avoid

9 going out of bounds. Add a check to confirm that the index
10 is not out of bounds.

11

12 Change-Id: Ib7abcc5347ba49a8c787ec32e8519a11085456d9

13 Signed-off-by: quic_anane

14

15 diff --git a/dsp/adsprpc.c b/dsp/adsprpc.c

16 index d7e2c3e..631d1b3 100644

17 --- a/dsp/adsprpc.c

18 +++ b/dsp/adsprpc.c

19 @@ -8172,6 +8172,12 @@ static int fastrpc_cb_probe(struct
device *dev)

20 for (j = 1; j < sharedcb_count &&

21 chan->sesscount < NUM_SESSIONS; j++) {

22 chan->sesscount++;

23+ VERIFY(err, chan->sesscount < NUM_SESSIONS);

24 + if (err) {

25 + ADSPRPC_WARN("failed, to add shared session, maximum/
sessions (%d) reached \n", NUM_SESSIONS);

26 + break;

27 + T

28 dup_sess = &chan->session[chan->sesscount];

29 memcpy (dup_sess, sess,

30 sizeof (struct fastrpc_session_ctx));

Listing 4: Git commit of an adsprpc out-of-bounds access.

possibility of exploiting them in an n-day scenario.

Another critical source of information is the source code for
any kernel modifications, including driver code, which must
be released under the GNU General Public License version
2 (GPLv2). This obligation arises from Android’s use of
the GPLv2 licensed Linux kernel: Any distributed modified
versions must also have their corresponding source code made
publicly available under the same terms. Here, we exploit this
open-source policy to identify n-day driver vulnerabilities.

History Tree Search. Multiple kernel driver source codes
are available via git repositories hosted by Google or ODM
vendors, such as Qualcomm. For example, Qualcomm’s
DSP frpc-adsprpc kernel driver repository is publicly
accessible at https://git.codelinaro.org/clo/la/
platform/vendor/qcom/opensource/dsp-kernel.git.
While we demonstrate our approach using two security flaws
in the frpc-adsprpc driver, this method can be applied
generically to all publicly available repositories.

Our approach involves searching the entire repository his-
tory for keywords that suggest a commit addresses a se-
curity flaw. Examples of such keywords include bug, use-
after-free, and out-of-bounds. Using these, we identify vul-
nerabilities in the git repository. One example is commit
2466b in mid-2024, as shown in Listing 4. This patch
introduces a check to ensure that the sesscount mem-
ber variable from the struct fastrpc_channel_ctx re-
mains within its intended range of [0, NUM_SESSIONS-1].
This patch adds the following check: VERIFY (err, chan-

https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/dsp-kernel.git
https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/dsp-kernel.git

1 commit 3ale7d811168a32b10171905503d724605064238

2 Author: DEEPAK SANNAPAREDDY <quic_sdeeredd@quicinc.com>
3 Date: Fri Sep 22 16:32:06 2023 +0530

4

5 msm: adsprpc: Handle UAF in process shell memory

6

7 Added flag to indicate memory used

8 in process initialization. And, this memory

9 would not removed in internal unmap to avoid

10 UAF or double free.

11

12 Change-Id: Ie470feb58ac334421d186feb41fa67bd24bbbefea
13 Signed-off-by: DEEPAK SANNAPAREDDY

14

15 diff --git a/dsp/adsprpc.c b/dsp/adsprpc.c

16 index 2c28969..43648e9 100644

17 --- a/dsp/adsprpc.c

18 +++ b/dsp/adsprpc.c

19 @@ -4351,6 +4351,8 Q@@ static int
fastrpc_init_create_static_process(struct fastrpc_file

20 mutex_lock(&fl->map_mutex) ;

21 err = fastrpc_mmap_create(fl, -1, NULL, O, init->mem,
22 init->memlen, ADSP_MMAP_REMOTE_HEAP_ADDR, &mem) ;

23 + if (mem)

24 + mem->is_filemap = true;

25 mutex_unlock (&f1l->map_mutex) ;

26 if (err || ('mem))

27 goto bailj

Listing 5: Git commit of an adsprpc UAF access.

>sesscount < NUM_SESSIONS). Before, a malicious ac-
tor could exploit the vulnerability to perform an Out-Of-
Bounds (OOB) write in the memcpy function. Exploitation is
possible as chan->session[chan->sesscount] (aliased
as dup_sess) would be misinterpreted as fastrpc_chan-
nel_ctx. OOB writes are a common initial exploit primitive
with the potential for system compromise [9,45,48,49,91].
Another example of an identified n-day vulnerability is
the end-2023 Use-After-Free (UAF) flaw involving the fas-
trpc_mmap, as shown in Listing 5. We identified this flaw
by searching the history for UAF. According to the commit
message, this vulnerability can pivot to a Double-Free (DF)
scenario, also a robust exploit primitive [45,49, 86,91].

5.2 N-Day Analysis

We manually collect publicly available git repositories and
bug reports. The repositories are sourced from device OEMs
(e.g., Xiaomi and OnePlus), ODMs (e.g., Qualcomm and Me-
diaTek), and Google. The bug reports are obtained from plat-
forms such as Google Project Zero’s issue tracker. None of the
bug reports referenced the specific patches that fixed the dis-
covered vulnerabilities. It was, therefore, part of our analysis
to identify the corresponding patches for the report.

Our analysis involves a two-step process. First, we automat-
ically filter commit messages from these repositories using
security-related keywords, as described in Section 5.1. We
started with commit messages from 2020 to December 2024
(date of analysis). Then, we manually verified the filtered
commits to confirm whether the changes addressed security-
critical bugs. Only commits with clear evidence are included

Table 2: The capability granted by n-day vulns per driver.

Driver Module Capability
UAF OOB Others ID Total

frpc-adsprpc.ko 12 3 1 3 19
jpeg-driver.ko 2 1 0 0 3
mtk_perf_ioctl.ko 1 0 4 7 12
apusys.ko 0 1 1 1 3
ged.ko 1 2 3 3 9
trusted_mem.ko 0 2 1 0 3
xlog.ko 0 0 1 0 1

16 9 11 14 50

UAF: Use-after-free and double-free OOB: Out-of-bound write
Others: Uninit variable, null pointer deref and denial of service
ID: Out-of-bound read and information disclosure

in our analysis, e.g., in Listings 4 and 5. Using this approach,
we identified 50 security-critical issues: 45 initially from git
repositories and 7 from bug reports, with 2 representing dupli-
cates found in both sources. For the analysis, we categorized
them based on their exploit capabilities. While several stem
from race conditions, their capabilities result in a UAF or an
OOB write. The n-day vulnerabilities are classified into four
categories (see Table 2):

UAF: Use-after-free access and double-free.

OOB: Out-of-bound write.

Others: Uninitialized variable access, null pointer deref-

erence and denial of service.

ID: Out-of-bound read and information disclosure.
These categories are critical for compromising Android de-
vices. UAF, DF, and OOB write capabilities are particularly
notable, as they serve as initial exploit primitives with numer-
ous exploit techniques for system compromise [9, 13, 19,45,
49,60, 84, 86,91]. Other vulnerabilities, such as null pointer
dereferences and Denial Of Service (DOS), also offer path-
ways to root. For example, Jenkins demonstrated an inno-
vative approach to exploiting these issues [28]. Similarly,
prior work has shown how to effectively exploit Uninitial-
ized Variables (UV) [11,38,47]. Information Disclosure (ID)
capabilities are essential in end-to-end exploitation, as demon-
strated by prior research [43,44,48,50]. These vulnerabilities
allow malicious actors to locate target kernel objects, which
most kernel exploits require [26,27,50,63,65,66,78].

Table 2 shows the results of our analysis of n-day driver vul-
nerabilities (excluding GPU drivers), with 50 vulnerabilities
identified. Dividing the results into different categories, we
observe that vulnerabilities affecting UAF capabilities are the
most prevalent, while OOB writes are the least prevalent. We
also observe a variation in the number of vulnerabilities iden-
tified per driver. We did not find matching git repositories for
Samsung’s npu.ko and camera.ko, Xiaomi’s migt . ko and
the apuext part of apusys.ko. Formi_log.ko, we found a
repository, but no commits indicating security-related fixes.

Validity of Analysis. We reconstructed n-day vulnera-
bilities using open-source information from the respective

Table 3: Device firmware categorized by security patch level and release date by OEM vendor.

OEM 2023 2024 Total
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

Asus o o0 o0 0 0 0 000 06 0O 0 0 0 O o0 o0 1 1 1 0 1 2 6
OnePus 0 0 3 1.0 0 0 01 0 2 O 0 0 O 1 0 1 0 0 0 0 O 9
Oppo o 0 0 0 0 0 0 0 1 0 O 1 20 0 0 0 2 1 o o0 0 O 7
Realme o 00 2 0 0 0 0 0 0 O 1 0 2 1 0 2 0 1 33 0 1 16
Vivo o o0 o0 o o0 o0 0 00 O o0 o o0O0 o0 3 1 0o 0 1 2 0 O 7
Xiaomi o o0 1 15 2 3 1 2 2 2 12 12 8 21 10 16 16 26 24 30 19 18 231
Samsung 1 3 4 4 0 2 4 5 2 0 6 12 7 8 15 14 10 24 10 19 12 25 30 217

git repositories. Our reconstruction is based on security
experts identifying patches that fix vulnerabilities, includ-
ing capabilities such as UAF, DF, or OOB writes. How-
ever, we do not claim or evaluate whether each specific
vulnerability enables direct system compromise. We even
argue that limiting the focus solely to vulnerabilities al-
ready proven to enable direct system compromise overlooks
broader security risks and creates a harmful trend in vul-
nerability prioritization. The rise of novel exploitation tech-
niques [9, 19,26, 28,39,44-47,49, 60,79, 84-86, 88,90,91]
demonstrates that increasingly weaker exploit primitives can
still lead to system compromise despite modern defenses.
For example, overwriting one byte with zero [13,45,59] has
been shown to compromise modern systems. Similarly, null
pointer dereferences, which were considered mitigated after
the introduction of mmap_min_addr, were re-enabled due to
a novel kernel exploit technique to compromise recent Linux
systems [28]. This shows that even vulnerabilities perceived
as low- to no-risk can be leveraged for system compromise.
Given this, we argue that neither security researchers nor
vendors should primarily focus their time and effort on de-
termining whether each n-day vulnerability is directly ex-
ploitable for system compromise. This, in turn, can lead to
poor prioritisation of vulnerabilities, wasting time and re-
sources that could be spent integrating patches. We, therefore,
conclude that if an accessible vulnerability falls into a cate-
gory known to facilitate system compromise, such as UAF, DF,
or OOB writes, this should suffice to classify it as critical. In-
stead, the focus should be on promptly incorporating patches
to mitigate these vulnerabilities and prevent their exploitation.
However, while we do not demonstrate the exploitability of
each vulnerability, we verify the reachability of vulnerable
code for a representative subset of vulnerabilities on a real
device, supporting n-day exploitability (see Section 6.3).

6 Detecting N-Day Patches in Kernel Drivers

In this section, we perform a large-scale analysis of the inclu-
sion of n-day patches in kernel modules for ODM-specific
device drivers. We examine the absence and delay of patches
for a subset of the 50 n-day vulnerabilities identified in Sec-

tion 5.2. Our dataset comprises 493 firmware versions from
131 devices across 7 OEMs, with multiple versions available
for devices from Samsung and Xiaomi. For other devices, we
use the most recent firmware available.

To assess the susceptibility of devices to n-day vul-
nerabilities, we evaluate each device based on its most
recent available firmware. Specifically, we test whether
known vulnerabilities—publicly available before this avail-
able firmware release—are still present. We show that 61.4 %
of these devices have at least one n-day vulnerability, making
them vulnerable to exploitation. Alarmingly, 59.1 % of these
devices contain at least one highly critical n-day vulnerability.
These highly critical vulnerabilities fall into the UAF or OOB
categories. They provide initial exploit primitives with well-
researched exploit techniques [9, 13, 19,45,49,60, 84,86,91].
We also analyze the patch delay across 131 devices based on
their respective security patch levels. Our results show sig-
nificant delays in patch integration, with delays up to 830d.
These results demonstrate that our identified drivers are sus-
ceptible targets for malicious actors, satisfying C3.

To perform this large-scale analysis, we present a semi-
automatic approach for detecting patch presence for 21 of
the 50 n-day driver vulnerabilities (see Section 6.1). Using
this approach, we analyze compiled kernel modules extracted
from device firmwares (see Section 6.2). Lastly, we demon-
strate on a representative subset of these vulnerabilities that
they are triggerable on a real device (see Section 6.3).

Firmware Versions. We have a total of 493 firmware ver-
sions from 131 devices across 7 OEM vendors. For Xiaomi
and Samsung, our collection contains the latest firmware ver-
sion for multiple devices as well as older versions. For the
other OEM vendors (i.e., Oppo, OnePlus, Asus, Realme, and
Vivo), we analyze the most recent firmwares available online,
ranging between early-2023 and end-2024. Table 3 shows the
amount of firmwares for each security patch level and OEM.

6.1 Patch Detection Approach

We demonstrate a semi-automated approach for detecting
security patches in kernel drivers by analyzing code modifi-
cations in the compiled kernel modules. We exclude patches
that fall outside our analytical framework’s strategies, which

focus on two primary methods: symbol-based detection and
control-flow analysis through decompilation.

Symbol-Based Detection. We leverage the fact that secu-
rity patches frequently introduce symbols. These could, e.g.,
be references to global functions, global variables, or unique
string artifacts for error messages and diagnostic output. For
globally accessible symbols, our approach analyzes whether
the symbols introduced in the source patch are present in the
compiled target driver. We exclude inlined function symbols,
as these may not result in detectable changes in the compiled
binary. To eliminate false negatives, we only consider cases
where these symbols are also present in the most recent ver-
sion of the kernel driver. String artifacts provide an additional
possibility for patch detection. Security patches frequently
include unique strings, such as warnings or diagnostic mes-
sages (see Listing 4), that can be used as identifiers in the
binary representation of the driver. We exclude cases where
introduced strings are not unique, e.g., because they had been
used in other places before the patch already.

On symbol absent, further manual verification is required to
rule out false negatives, involving two key considerations: ker-
nel driver configurability and code evolution. Kernel drivers
often implement configurations that selectively exclude code
segments, requiring manual analysis to verify whether patch-
affected code exists. Additionally, subsequent or custom com-
mits may modify or replace strings the patch introduces, po-
tentially obscuring its presence. Our approach accounts for
these changes to ensure accurate patch detection.

Control-Flow Analysis. Security patches frequently im-
plement modifications to program control flow [35,93], typ-
ically through additional conditional logic, as demonstrated
in Listing 5. Our control-flow analytical approach focuses
on identifying patches that modify program logic on patch-
modified functions through a two-phase process. Initially,
we perform differential analysis of assembly code across se-
quential driver versions. The absence of assembly-level dif-
ferences between versions indicates patch exclusion within
that interval. For versions exhibiting assembly modifications,
we employ Ghidra to perform decompilation. Although the
decompilation output does not perfectly match the original
code, it enables the identification of control-flow modifica-
tions through comparative manual analysis. Combining both
approaches allows for efficient manual verification while not
degrading output performance, especially since most changes
in driver functions are due to security issues, as observed.

Future Work. While we used a tailored approach to detect
patches in ODM-specific drivers, prior work [35,93] focused
on pre-GKI kernel images. Notably, PDiff [35] did not re-
lease their approach as open source, but Fiber [93] or similar
approaches, such as those using angr [67], could be adapted
to detect the absence of patches. However, Fiber was origi-
nally designed for kernel images rather than kernel modules,
and adapting it to our methodology would require significant
engineering effort. Fiber’s evaluation was also limited to 11

Table 4: Devices’ n-day susceptibility to vulnerabilities
known as of their most recent firmware release. All Device
Analyzed includes all studied devices with the most firmware
versions, while Devices with Target Drivers refers to those
having hardware support for at least one of the target drivers.

OEM All Devices Analyzed Devices with Target Drivers

Crit Vuln Any Vuln Crit Vuln Any Vuln

% % % %
Samsung 45.5 45.5 74.1 74.1
Xiaomi 67.3 71.4 75.0 79.5
Asus 75.0 100.0 75.0 100.0
Realme 56.2 62.5 56.2 62.5
Vivo 40.0 40.0 40.0 40.0
Oppo 42.9 42.9 42.9 42.9
OnePlus 85.7 85.7 85.7 85.7

kernel images using custom execution allowlists. To meet the
requirements of our dataset, which includes 493 firmwares,
each containing 1 to 5 relevant kernel modules, we would
need to significantly extend Fiber’s capabilities for efficient
patch detection. Given these challenges, we suggest extending
Fiber or developing a similar framework as future work.

6.2 Large-Scale Analysis on Patch Inclusion

By integrating symbol-based detection and control-flow anal-
ysis, our methodology ensures the identification of security-
related patches. To evaluate the effectiveness of our approach,
we select 21 n-day vulnerabilities from the full set of 50 iden-
tified, focusing on vulnerabilities in the DSP, JPEG, and GED
kernel drivers, such as Listings 4, 5 and 6 to 10. These vul-
nerabilities include highly critical ones (i.e., 9 UAF and 6
OOB) as well as moderately critical ones (i.e., 1 Others and 5
ID), representing a balanced mix of different severity levels.
Our main goals are: to quantify how many devices—running
their respective newest available firmware versions—remain
susceptible to these n-day vulnerabilities and assess security-
relevant patch delays.

Device Susceptibility. We assess device susceptibility un-
der two conditions. First, we analyze the most recent firmware
available for all 131 Android devices in our dataset (see Ta-
ble 3) to determine what fraction of the 21 n-day vulnerabili-
ties each device is still vulnerable to. Second, we repeat this
only for devices with hardware support for at least one of the
target kernel drivers identified as potentially vulnerable.

Table 4 shows susceptibility rates, separating results for
all devices (All Devices Analyzed) and those with hardware
support of at least one target driver (Devices with Target
Drivers). In both cases, we observe widespread susceptibil-
ity to highly and moderately critical n-day vulnerabilities.
For instance, 45.5 % of Samsung devices and 71.4 % of Xi-
aomi devices were found to be vulnerable to at least one
n-day vulnerability. Aggregated across all devices, 59.1 %
were vulnerable to at least one highly critical vulnerability,

Table 5: Lower bound for average n-day patch delays in years
across device OEM vendors and vulnerability categories.

Table 6: Lower bound for average n-day patch delays in years
across device ODMs and vulnerability categories.

OEM Average Delay Time (Lower Bound)
UAF (010)] Others 1D

ODM Average Delay Time (Lower Bound)
UAF 00B Others ID

Samsung 032y204 040y+0.1 032y+0.0 0.79y+0.7
Xiaomi 0.56y+04 0.70y+0.9 0.88y+£0.6

while 61.4 % were vulnerable to at least one of any severity.
Susceptibility rates for Samsung and Xiaomi appear lower
primarily due to the lack of hardware support for the drivers
we analyzed. When excluding devices without the analyzed
hardware—like Samsung’s NPU—susceptibility rates rise to
74.1 % for Samsung and 79.5 % for Xiaomi.

Crucially, while Table 4 shows patching trends, it does
not support a direct comparison between lineage-providing
OEMs (i.e., Xiaomi and Samsung) and others, as, e.g., many
2024 vulnerabilities cannot be tested on non-lineage vendors
that only publicly provide older firmwares.

OEM Breakdown. Susceptibility is often not limited to
a single vulnerability. We find a correlation between being
affected by one vulnerability and being affected by multiple.
For example, 29.5 % of Samsung devices and 49 % of Xiaomi
devices were vulnerable to three or more n-day vulnerabilities.

Takeaway 1

If a device is susceptible to 1 n-day vulnerability, it is likely
susceptible to multiple vulnerabilities.

We also observe a trend in patch behavior across OEMs,
with Xiaomi standing out. Active patching of vulnerabilities
in Xiaomi devices is limited, with only a few instances ob-
served that patch the identified n-day vulnerabilities. In many
cases, when the earliest firmware version of a device is found
to be susceptible to n-day vulnerabilities, subsequent firmware
versions tend to remain susceptible. This pattern suggests that
security flaws are often addressed indirectly through the re-
lease of newer Android devices with updated kernel driver
versions that include the necessary patches rather than through
firmware updates for existing devices. While this approach is
more prominent in Xiaomi’s practices, similar tendencies are
also observed, albeit notably lesser, in Samsung’s handling of
such vulnerabilities.

Takeaway 2

Security-related flaws are likely addressed through new
device releases than through updates to existing devices.

Patch Delays. We define a patch as either integrating a
fix into existing software or entirely replacing the affected
software with a non-susceptible version. Our analysis reveals
variability in how patches propagate across firmware versions.
Table 5 quantifies the time gap between the released commit
date of a patch and the last analyzed firmware version where
the patch was missing. The precision of these results depends

Qualcomm 0.38y+£0.4 0.23y+0.2 0.32y£0.0 0.65y+0.6
MediaTek 0.71y+0.5 2.15y=0.1 2.00y£0.3

on the granularity of our firmware dataset, which varies be-
tween OEM vendors. Our dataset contains temporal gaps of
months. Patch integration could have occurred between the
release of the last unpatched and the first patched firmware in
our dataset. Our results are, therefore, conservative estimates
for the patch integration delay. Specifically, some patches are
missing from the latest firmware releases at the time of our
analysis. In such cases, we conservatively estimate the delay
metrics by assuming that the patch will be included in the
next firmware release, which is a lower bound. Hence, our
delay measurements will likely underestimate actual patch
delays, which may be higher.

Table 5 highlights variations in patch delays across OEMs
and vulnerability types. Samsung generally patches security-
critical flaws faster than Xiaomi. Among vulnerability types,
OOB and Others are patched the quickest, followed by UAF,
while ID takes the longest. This trend reflects the perception
that information disclosure vulnerabilities are less critical
than UAF or OOB. However, UAF and OOB vulnerabilities
can still take over 500d to patch, with ID exceeding 800d.
On average, OOB vulnerabilities are patched more quickly
than UAF, which are patched faster than ID.

ODM Breakdown. In addition to analyzing patch delays
solely by OEM and vulnerability type, we further break down
the results by ODM chipset. Samsung’s Exynos-based devices
are excluded from this analysis due to the lack of publicly
available source repositories. Table 6 presents the results of
this ODM-based breakdown, revealing notable differences in
patching delays between Qualcomm- and MediaTek-based
chipsets. Compared to their Qualcomm counterparts, Medi-
aTek devices consistently exhibit longer patch delays of over
two times across OEMs and multiple vulnerability classes.
For example, for UAF vulnerabilities, the average patch delay
increases from approximately 4 months for Qualcomm to
over 8 months for MediaTek.

Takeaway 3

While the patch delay varies by OEM, ODM, and vulnera-
bility, some devices experience delays of over a year.

6.3 Representative Subset of N-Day Vulns

To support the claim that n-day vulnerabilities remain ex-
ploitable, we demonstrate that a representative subset can be
reliably triggered on a real Android device. Developing Proof-
of-Concept (PoC)s is a non-trivial task requiring substantial

time, device access, and in-depth driver-specific expertise,
even for experienced analysts like those at Google Project
Zero [23,26]. Given this complexity, we focus the follow-
ing analysis on a single device driver to ensure feasibility.
We target frpc-adsprpc. ko, which accounts for most iden-
tified vulnerabilities. Since we apply the same patch-based
approach across all affected modules, dynamically validating
one representative driver shows reachability and supports the
generalizability of our approach.

We select five vulnerabilities from this driver with their git
patch commit messages shown in Listings 6 to 10. These five
vulnerabilities represent a range of bug classes: one OOB read
(vulnl), three UAF issues (vuln2-4), and one information dis-
closure (vulnS). We evaluate these across 29 module versions
covering various release dates and 13 Android devices from
three major OEMs (Samsung, Xiaomi, and Asus), providing a
representative subset of both OEMs and n-day exposure time-
lines. Our findings (see Section 6.3.1) show that on Samsung
devices, the vulnerabilities remain n-day exploitable for O to
7 months. In contrast, on all tested Xiaomi and Asus devices,
multiple vulnerabilities remained exploitable even at the time
of analysis. The results for the representative subset align with
the results from our patch detection approach, supporting the
validity of our static determination (see Section 6.3.2).

We use a rooted Samsung Galaxy S23 equipped with the
Qualcomm SM8550-AC Snapdragon 8 Gen 2 chipset for
testing. Even after device rooting, most partitions (including
the one containing kernel drivers) are mounted using the
Enhanced Read-Only File System (EROFS), preventing direct
modification. To circumvent this, we flash TWRP/RO2RW
images and remount the vendor_d1lkm partition as writable,
enabling us to replace the frpc-adsprpc.ko driver with a
test version. Using this setup, we test driver versions from
13 Android phones, spanning multiple timestamps and three
OEMs. All 13 devices use the same chipset as our test device,
ensuring compatibility. We manually confirm that substituting
the driver module from another OEM with the same chipset
does not alter functionality. This allows us to test different
versions while keeping the engineering effort reasonable.

Triggering the vulnerabilities produces two observable ef-
fects: the UAF issues and the OOB read cause a crash, while
the information disclosure leaks a kernel pointer. We use pub-
licly available PoCs where possible (e.g., for vulnl [32]) or
develop one (e.g., for vulnS [31]) to trigger each vulnerability.

6.3.1 Analysis

We present our findings in Table 7. We begin by testing 10
versions of frpc-adsprpc. ko from the original Galaxy S23,
covering firmware releases available between March 2024
(the earliest relevant commit) and December 2024 (the time of
analysis). We find that the October 2024 release is the first to
include all five patches that mitigate the tested vulnerabilities.
All vulnerabilities are tested for S23 original drivers. However,

we omit vuln3 in broader tests on devices other than the S23
due to its long triggering time (more than 12 hours).

Next, we test the September and October 2024 driver ver-
sions across 4 additional Samsung models (Galaxy S23+,
S23 Ultra, Z Flip5, and Z FoldS). Consistent with the S23
results, the October release contains the full set of patches.
Patch delays for Samsung devices range from O to 7 months,
depending on the vulnerability.

We then test the November and December 2024 releases
for six Xiaomi models (MIX Fold 3, Redmi K70, POCO F6
Pro, Xiaomi 13 Ultra, 13 Pro, and 13) and the November 2024
release for two ASUS models (ROG Phone 7 and 7 Ultimate).
All of these most recent releases remain vulnerable to vuln2/5,
while four are also vulnerable to vuln1/4. Patch delays vary
between 0 and over 9 months, depending on the device and
specific vulnerability.

Takeaway 4

A PoC for an n-day vulnerability in ODM-maintained
drivers can be reused across OEMs and timeframes.

6.3.2 Validity Check of Patch Detection

We have two sets of patch inclusion analysis results: the
large, statically determined set described in Section 6.2, and
the smaller, dynamically determined subset discussed in Sec-
tion 6.3. We now validate the dynamically determined subset
by comparing it against the statically determined results, con-
firming consistency between them.

7 Discussion and Related Work

This section discusses the security implications and validity
of our findings, as well as related work.

Security Implications. Our analysis reveals that modern
Android devices have a significant kernel attack surface reach-
able from untrusted contexts, comprising kernel device drivers.
Many of these drivers expose known n-day vulnerabilities for
long periods of time, allowing malicious actors to bypass
the effort of developing zero-day exploits. Instead, they can
exploit these n-day vulnerabilities to compromise devices.
Crucially, as a device is only as secure as its weakest point,
our research highlights that device drivers represent this weak-
est link in current Android versions. A single pathway to root
access is sufficient to fully compromise Android devices.

Takeaway 5

Malicious actors can exploit n-day vulnerabilities, reducing
reliance on time-consuming zero-day development.

Validity of our Results. Our findings are mostly derived
from static analysis. To ensure consistency with real-world
scenarios, we incorporated dynamic testing and manual ver-
ification throughout. While we demonstrate n-day trigger-
ing for 5 vulnerabilities in Qualcomm-supplied DSP drivers,

our evaluation does not include full end-to-end exploitation.
Furthermore, static analysis has inherent limitations, such as
missing dynamic behaviors, and our evaluation focuses on a
subset of drivers and devices. As a result, there may be un-
known barriers to triggering the vulnerabilities and achieving
full exploitation. The reported numbers should, therefore, be
interpreted as estimates of real-world exploitability.

Patch Detection and Propagation. Prior work [35, 42,
93] has demonstrated methods for detecting patches in ker-
nel binaries by, e.g., deriving patch’s signatures and testing
them against the kernel binary. Numerous studies have ex-
plored solutions to mitigate the effects of delayed patch in-
tegration. Wang et al. [80] proposed temporary patch inte-
gration, while Chen et al. [10] and Xu et al. [89] introduced
hot patch techniques to mitigate vulnerabilities dynamically.
Talebi et al. [77] prevented harmful side effects of vulnera-
ble code through syscall instrumentation. Another security-
related problem is that while patches are available, vendors
are reluctant to apply them. Hence, other research [51] has
focused on faster and more correct patch propagation.

Patch and Defense Integration. The deployment of se-
curity updates and defenses in Android systems has been a
focus of various studies. Wu et al. [81] highlighted that most
issues in the Android Security Bulletin (ASB) originate from
native code, while Farhang et al. [15] observed that kernel-
related CVEs experience the longest delays in propagating
to vendor ASBs. This delay creates a window for attack-
ers to exploit vulnerabilities before patches reach end users.
Jones et al. [37] and Zhang et al. [95] quantified the time
lag, reporting delays of weeks to months for Android security
updates. Acar et al. [1] revealed significant fragmentation in
Android’s security update ecosystem, with inconsistent and
delayed patch rollouts across devices, vendors, and regions.
Maar et al. [48] recently analyzed the challenges of integrat-
ing mainline kernel defenses against n-day exploitation. Most
of these studies focused on Android versions that predate the
GKI initiative, which was intended to address kernel patch
delays for good. However, we show that these delays remain
a threat to device security as vendors struggle to integrate
patches in those parts of the kernel.

Security Analysis on Android. Google Project Zero has
been tracking zero-day exploits targeting Android since
2019 [69]. Their annual reviews [69, 71, 74, 76] analyze
trends in malicious actor behavior to enhance Android se-
curity. These reports emphasize the critical role of timely
patch deployment and defense integration in mitigating in-
the-wild exploitation [61]. Other research groups, such as the
Threat Analysis Group [75], GitHub Security Lab [55-58],
Zero Day Engineering [14], Blue Frost Security [65, 66],
Amnesty International’s Security Lab [23,24,61], and Citizen
Lab [40,41,53,61], also analyze exploitation trends.

Android Driver Security. Exploiting vulnerabilities in
kernel drivers, particularly the GPU, has been a key focus of
recent research [8, 14,16-18,56-58,73,75,76,84,87]. Collab-

oration between Google, Android, and ARM has contributed
to advances in vulnerability detection, mitigation, and harden-
ing [87]. NPU drivers have also been targeted [55, 62, 83, 94],
although such exploits have predominantly focused on Sam-
sung devices due to the unclear adoption of similar vulnera-
bilities in Qualcomm-based devices [55].

Research on DSP-related kernel drivers remains sparse [14],
but recent and concurrent exploits [23, 33] show that these
drivers were actively exploited to compromise Android de-
vices. Malicious actors exploited these drivers to install spy-
ware, such as NoviSpy, which specifically targets end users
in the wild [23]. These findings underscore the relevancy
of our work: the exploitability of device drivers is known to
malicious actors, so it is imperative that research catches up.

Most recently, concurrent work by Amnesty International’s
Security Lab [24] demonstrated that kernel device drivers
remain a primary attack vector for Android compromise. In
particular, malicious actors deployed zero-day exploits against
Android USB kernel drivers observed in-the-wild. Similar to
the 2024 DSP zero-day exploits [23], malicious actors then
installed NoviSpy spyware for surveillance.

While some studies have examined vulnerabilities in
drivers accessible from trusted contexts [36,82], the pervasive
threat posed by drivers accessible from untrusted contexts
remains largely unexplored. To the best of our knowledge,
Jenkins has done the closest analysis of the kernel attack sur-
face from untrusted security contexts [29]. Jenkins analyzed
the attack surface for 3 devices, i.e., Google Pixel 7, Xiaomi
11T, and Asus ROG 6D, and presented multiple zero-day vul-
nerabilities, demonstrating that security research on Android
drivers is sparse. We, on the other hand, performed a large-
scale analysis of 131 devices and discovered a large number of
drivers that are accessible and, worse, exploitable with n-day
vulnerabilities from untrusted contexts.

8 Conclusion

Prior compromises of Android devices often relied on ex-
ploit chains targeting GPU kernel drivers or higher user-space
privileges before targeting the kernel. In this paper, we com-
prehensively analyzed the kernel attack surface exposed to
untrusted security contexts. Our analysis reveals that this at-
tack surface is significantly larger than previously known,
comprising multiple device drivers. Within these drivers, we
identified vulnerabilities that remain unpatched for extended
periods or were still unpatched at the time of our analysis.
Specifically, 59.1 % of recent Android devices were vulnera-
ble to highly critical n-day exploits, with 61.4 % affected by
any vulnerability. These unpatched vulnerabilities present an
ideal target for malicious actors, as they eliminate the need to
invest substantial time and effort into developing zero-day ex-
ploits. This critical state of Android kernel security highlights
the need for urgent action to enhance patch management and
improve overall security.

9 Acknowledgements

We thank the anonymous reviewer and shepherd for their valu-
able feedback. We also thank Jann Horn and Seth Jenkins for
their help with triggering the PoCs, and the MediaTek Product
Security Team for identifying an error we subsequently fixed.
This research was funded in whole or in part by the Aus-
trian Research Promotion Agency (FFG) via the SEIZE and
AWARE project (FFG grant numbers 888087 and 915106).
Any opinions, findings, conclusions, or recommendations ex-
pressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

10 Ethics Considerations

We responsibly disclosed our findings to all affected parties,
including OEMs (Samsung, Xiaomi, Asus, Realme, OnePlus,
Oppo, and Vivo), ODMs (Samsung, Qualcomm, and Medi-
aTek), and Google.

* Asus, Realme, and MediaTek acknowledged our find-
ings.

* Samsung acknowledged the issues and has initiated
patching for affected devices. We had a follow-up meet-
ing focused on improving Android driver security.

* Google responded by stating that the issues fall outside
their scope of enforcement and directed us to report the
findings to OEMs directly.

Following best practices from Google Project Zero, we gave
all participants more than 90 days to address issues, with a
30-day grace period. This timeline left plenty of buffer time
for the earliest possible release date of this paper, allowing
all participants ample opportunity to develop and implement
comprehensive solutions before public release.

Moreover, we believe revealing these findings is crucial to
demonstrating how malicious actors can exploit the Android
environment. This underscores the need for urgent action to
improve overall Android security by addressing patch delays,
prioritizing device updates, and securing kernel attack sur-
faces. We strongly believe that publishing our findings will
improve the security of Android devices in the long term and
is, therefore, the most ethical course of action.

We are committed to an ethical approach that balances
responsible research with potential security improvements.
Our research relies exclusively on publicly available firmware
images obtained from multiple sources, including official
OEM/ODM vendor repositories and third-party providers.
While we recognize that methodological precedent alone can-
not justify research ethics, prior work [1,37,48,95] reinforces
our belief in the validity of analyzing publicly available data.
We have not analyzed how the firmwares have been obtained
by the third-party providers.

All dynamic testing was conducted in a controlled labora-
tory environment using dedicated research devices, further
ensuring the integrity and safety of our investigation.

11 Open Science

While we aim to make all datasets, crawling tools, and anal-
ysis scripts open source, doing so poses a risk of misuse by
malicious actors, as observed in the past [27,53,68,70,75,76].
Consequently, we do not recommend open-sourcing these re-
sources. However, if the USENIX committee holds a different
opinion, we will share all our findings and tools accordingly.

References

[1] Abbas Acar, Giiliz Seray Tuncay, Esteban Luques,
Harun Oz, Ahmet Aris, and Selcuk Uluagac. 50 Shades
of Support: A Device-Centric Analysis of Android Se-
curity Updates. In NDSS, 2024.

[2] Android. Application Sandbox, 2021. URL: https:
//source.android.com/security/app-sandbox.

[3] Android. Build SELinux policy, 2024. URL:
https://source.android.com/docs/security/
features/selinux/build.

[4] Android. Generic Kernel Image (GKI) project, 2024.
URL: https://source.android.com/docs/core/
architecture/kernel/generic-kernel-image.

[5] AppBrain. Top manufacturers, 2024. accessed:
31.12.2024. URL: https://web.archive.org/web/
20241230133601/https://www.appbrain.com/
stats/top-manufacturers.

[6] Brandon Azad. A survey of recent ios
kernel exploits, 2020. URL: https://
googleprojectzero.blogspot.com/2020/06/a-
survey-of-recent-ios-kernel-exploits.html.

[7] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective Static Analysis of Concurrency Use-After-
Free Bugs in Linux Device Drivers. In USENIX ATC,
2019.

[8] Ian Beer. Mind the Gap, 2022. URL: https://
googleprojectzero.blogspot.com/2022/11/.

[9] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun
Qian. KOOBE: Towards Facilitating Exploit Genera-
tion of Kernel Out-Of-Bounds Write Vulnerabilities. In
USENIX Security, 2020.

[10] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia,
Chenfu Bao, and Tao Wei. Adaptive Android Kernel
Live Patching. In USENIX Security, 2017.

[11] Haehyun Cho, Jinbum Park, Joonwon Kang, Tiffany
Bao, Ruoyu Wang, Yan Shoshitaishvili, Adam Doupé,
and Gail-Joon Ahn. Exploiting Uses of Uninitialized

https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://source.android.com/docs/security/features/selinux/build
https://source.android.com/docs/security/features/selinux/build
https://source.android.com/docs/core/architecture/kernel/generic-kernel-image
https://source.android.com/docs/core/architecture/kernel/generic-kernel-image
https://web.archive.org/web/20241230133601/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20241230133601/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20241230133601/https://www.appbrain.com/stats/top-manufacturers
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2022/11/
https://googleprojectzero.blogspot.com/2022/11/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Stack Variables in Linux Kernels to Leak Kernel Point-
ers. In WOOT, 2020.

Chromium. PowerVR GPU - Kernel heap OOB write
in RGXFWChangeOSidPriority - CVE-2024-23698,
2024. URL: https://apvi.issues.chromium.org/
issues/42420036.

Devil. CoRJail: From Null Byte Overflow To Docker
Escape Exploiting poll_list Objects In The Linux
Kernel, 2022. URL: https://syst3mfailure.io/
corjail/.

Alisa Esage. Deep Dive: Qualcomm MSM
Linux Kernel & ARM Mali GPU O0-day Ex-
ploit Attacks of October 2023, 2023. URL:
https://zerodayengineering.com/insights/
qualcomm-msm-arm-mali-Odays.html.

Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka,
and Jens Grossklags. An empirical study of android
security bulletins in different vendors. In WWW, 2020.

Guang Gong. TiYunZong: An Exploit Chain to
Remotely Root Modern Android Devices, 2020.
URL: https://github.com/secmob/TiYunZong-
An-Exploit-Chain-to-Remotely-Root-Modern-
Android-Devices/blob/master/us-20-Gong-
TiYunZong-An-Exploit-Chain-to-Remotely-
Root-Modern-Android-Devices-wp.pdf.

Xiling Gong, Xuan Xing, and Eugene Rodionov. The
Way to Android Root: Exploiting Your GPU On Smart-
phone, 2024. URL: https://i.blackhat.com/BH-
US-24/Presentations/REVISED02-US24-Gong-
The-Way-to-Android-Root-Wednesday.pdf.

Ben Hawkes. the Qualcomm
Adreno GPU, 2020. URL: https://
googleprojectzero.blogspot.com/2020/09/
attacking-qualcomm-adreno-gpu.html.

Attacking

Jann Horn. How a simple Linux kernel
memory corruption bug can lead to complete
system compromise, 2021. URL: https:
//googleprojectzero.blogspot.com/2021/
10/how-simple-1linux-kernel-memory.html.

Jann Horn. CVE-2022-22706 / CVE-2021-
39793: Mali GPU driver makes read-only im-
ported pages host-writable, 2022. URL: https://
googleprojectzero.github.io/0Odays-in-the-
wild//0day-RCAs/2021/CVE-2021-39793.html.

Jann Horn. adsprpc: refcount leak leading to
UAF in fastrpc_get_process_gids, 2024. URL:
https://project-zero.issues.chromium.org/
issues/42451711.

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

Amnesty International. Forensic Methodology
Report: How to catch NSO Group’s Pegasus, 2021.
URL: https://www.amnesty.org/en/latest/
research/2021/07/forensic-methodology-
report-how-to-catch-nso-groups-pegasus/.

Amnesty International.
Surveillance and the suppression of civil
society in Serbia, 2024. URL: https:
//securitylab.amnesty.org/latest/2024/

12/a-digital-prison-surveillance-and-the-

"A Digital Prison":

suppression-of-civil-society-in-serbia/.

Amnesty International. Cellebrite zero-day exploit used
to target phone of Serbian student activist, 2025. URL:
https://securitylab.amnesty.org/latest/
2025/02/cellebrite-zero-day-exploit-
used-to-target-phone-of-serbian-student-
activist/.

Amnesty International. Europe: Paragon attacks
highlight Europe’s growing spyware crisis, 2025. URL:
https://www.amnesty.org/en/latest/news/
2025/03/europe-paragon-attacks-highlight-
europes-growing-spyware-crisis/.

Seth Jenkins. Exploiting CVE-2022-42703 -
Bringing back the stack attack, 2022. URL:
https://googleprojectzero.blogspot.com/
2022/12/exploiting-CVE-2022-42703-
bringing-back-the-stack-attack.html.

Seth Jenkins. Analyzing a Modern In-the-
wild Android Exploit, 2023. URL: https:
//googleprojectzero.blogspot.com/2023/
09/analyzing-modern-in-wild-android-
exploit.html.

Seth Jenkins. Exploiting null-dereferences
in the Linux kernel, 2023. URL: https:
//googleprojectzero.blogspot.com/2023/
01/exploiting-null-dereferences-in-
linux.html.

Seth Jenkins. Driving forward in An-
droid drivers, 2024. URL: https://
googleprojectzero.blogspot.com/2024/06/
driving-forward-in-android-drivers.html.

Seth Jenkins. FASTRPC_ATTR_KEEP_MAP logic
bug allows fastrpc_internal_munmap_fd to concurrently
free in-use mappings leading to UAF, 2024. URL:
https://project-zero.issues.chromium.org/
issues/42451725.

Seth Jenkins. Incorrect searching algorithm in
fastrpc_mmap_find leads to kernel address space

https://apvi.issues.chromium.org/issues/42420036
https://apvi.issues.chromium.org/issues/42420036
https://syst3mfailure.io/corjail/
https://syst3mfailure.io/corjail/
https://zerodayengineering.com/insights/qualcomm-msm-arm-mali-0days.html
https://zerodayengineering.com/insights/qualcomm-msm-arm-mali-0days.html
https://github.com/secmob/TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices/blob/master/us-20-Gong-TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices-wp.pdf
https://github.com/secmob/TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices/blob/master/us-20-Gong-TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices-wp.pdf
https://github.com/secmob/TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices/blob/master/us-20-Gong-TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices-wp.pdf
https://github.com/secmob/TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices/blob/master/us-20-Gong-TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices-wp.pdf
https://github.com/secmob/TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices/blob/master/us-20-Gong-TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices-wp.pdf
https://i.blackhat.com/BH-US-24/Presentations/REVISED02-US24-Gong-The-Way-to-Android-Root-Wednesday.pdf
https://i.blackhat.com/BH-US-24/Presentations/REVISED02-US24-Gong-The-Way-to-Android-Root-Wednesday.pdf
https://i.blackhat.com/BH-US-24/Presentations/REVISED02-US24-Gong-The-Way-to-Android-Root-Wednesday.pdf
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-39793.html
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-39793.html
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-39793.html
https://project-zero.issues.chromium.org/issues/42451711
https://project-zero.issues.chromium.org/issues/42451711
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://securitylab.amnesty.org/latest/2024/12/a-digital-prison-surveillance-and-the-suppression-of-civil-society-in-serbia/
https://securitylab.amnesty.org/latest/2024/12/a-digital-prison-surveillance-and-the-suppression-of-civil-society-in-serbia/
https://securitylab.amnesty.org/latest/2024/12/a-digital-prison-surveillance-and-the-suppression-of-civil-society-in-serbia/
https://securitylab.amnesty.org/latest/2024/12/a-digital-prison-surveillance-and-the-suppression-of-civil-society-in-serbia/
https://securitylab.amnesty.org/latest/2025/02/cellebrite-zero-day-exploit-used-to-target-phone-of-serbian-student-activist/
https://securitylab.amnesty.org/latest/2025/02/cellebrite-zero-day-exploit-used-to-target-phone-of-serbian-student-activist/
https://securitylab.amnesty.org/latest/2025/02/cellebrite-zero-day-exploit-used-to-target-phone-of-serbian-student-activist/
https://securitylab.amnesty.org/latest/2025/02/cellebrite-zero-day-exploit-used-to-target-phone-of-serbian-student-activist/
https://www.amnesty.org/en/latest/news/2025/03/europe-paragon-attacks-highlight-europes-growing-spyware-crisis/
https://www.amnesty.org/en/latest/news/2025/03/europe-paragon-attacks-highlight-europes-growing-spyware-crisis/
https://www.amnesty.org/en/latest/news/2025/03/europe-paragon-attacks-highlight-europes-growing-spyware-crisis/
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/01/exploiting-null-dereferences-in-linux.html
https://googleprojectzero.blogspot.com/2023/01/exploiting-null-dereferences-in-linux.html
https://googleprojectzero.blogspot.com/2023/01/exploiting-null-dereferences-in-linux.html
https://googleprojectzero.blogspot.com/2023/01/exploiting-null-dereferences-in-linux.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://project-zero.issues.chromium.org/issues/42451725
https://project-zero.issues.chromium.org/issues/42451725

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

info leak, 2024. URL: https://project-
zero.issues.chromium.org/issues/42451713.

Seth Jenkins. is_compat flag in adsprpc driver
leads to access of userland provided addresses as
kernel pointers, 2024. URL: https://project-
zero.issues.chromium.org/issues/42451710.

Seth Jenkins. The Qualcomm DSP Driver - Un-
expectedly Excavating an Exploit, 2024. URL:
https://googleprojectzero.blogspot.com/
2024/12/qualcomm-dsp-driver-unexpectedly-
excavating-exploit.html.

Seth Jenkins. UAF race of global maps in fastrpc_-
mmap_create (and epilogue functions), 2024. URL:
https://project-zero.issues.chromium.org/
issues/42451715.

Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe
Wang, Xiaohan Zhang, Xinyu Xing, Min Yang, and
Zhemin Yang. PDiff: Semantic-Based Patch Presence
Testing for Downstream Kernels. In CCS, 2020.

Xingyu Jin and Clement Lecigene. CVE-2024-44068:
Samsung m2mlshot_scaler0 device driver page
use-after-free in Android, 2024. URL: https://
googleprojectzero.github.io/0Odays-in-the-
wild/Oday-RCAs/2024/CVE-2024-44068.html.

Kailani R. Jones, Ting-Fang Yen, Sathya Chandran Sun-
daramurthy, and Alexandru G. Bardas. Deploying an-
droid security updates: an extensive study involving
manufacturers, carriers, and end users. In CCS, 2020.

Max Kellermann. The Dirty Pipe Vulnerability, 2022.
URL: https://dirtypipe.cm4all.com/.

Vasileios P Kemerlis, Michalis Polychronakis, and An-
gelos D Keromytis. ret2dir: Rethinking kernel isolation.
In USENIX Security, 2014.

Citizen Lab. ForcedEntry NSO Group iMessage
Zero-Click Exploit Captured in the Wild, 2021. URL:
https://citizenlab.ca/2021/09/forcedentry-
nso-group-imessage-zero-click-exploit-
captured-in-the-wild/.

Citizen Lab. Blastpass NSO Group iPhone Zero-Click,
Zero-Day Exploit Captured in the Wild, 2023. URL.:
https://citizenlab.ca/2023/09/blastpass-
nso-group-iphone-zero-click-zero-day-
exploit-captured-in-the-wild/.

Jakob Lell and Karsten Nohl. Mind the
Gap - Uncovering the Android patch gap
through binary-only = patch analysis, 2018.
URL: https://conference.hitb.org/

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

[53]

hitbsecconf2018ams/materials/D2T1%20-
%20Karsten’20Noh1%20&%20Jakob’%20Lel1%20-
%20Uncovering%20the’,20Android%20Patch,
20Gap%20Through’%20Binary-0nly%20Patch,
20Level’,20Analysis.pdf.

Zhengchuan Liang, Xiaochen Zou, Chengyu Song, and
Zhiyun Qian. K-LEAK: Towards Automating the Gener-
ation of Multi-Step Infoleak Exploits against the Linux
Kernel. In NDSS, 2024.

Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu,
Chensheng Yu, Xinyu Xing, and Kang Li. GREBE:
Unveiling Exploitation Potential for Linux Kernel Bugs.
In S&P, 2022.

Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. DirtyCred:
Escalating Privilege in Linux Kernel. In CCS, 2022.

Zhenpeng Lin, Xinyu Xing, Zhaofeng Chen, and Kang
Li. Bad io_uring: A New Era of Rooting for Android,
2023. URL: https://i.blackhat.com/BH-US-23/
Presentations/US-23-Lin-bad_io_uring.pdf.

Kangjie Lu, Marie-Therese Walter, David Pfaff, Ste-
fan Nimberger, Wenke Lee, and Michael Backes. Un-
leashing Use-Before-Initialization Vulnerabilities in the
Linux Kernel Using Targeted Stack Spraying. In NDSS,
2017.

Lukas Maar, Florian Draschbacher, Lukas Lamster, and
Stefan Mangard. Defects-in-Depth: Analyzing the Inte-
gration of Effective Defenses against One-Day Exploits
in Android Kernels. In USENIX Security, 2024.

Lukas Maar, Stefan Gast, Martin Unterguggenberger,
Mathias Oberhuber, and Stefan Mangard. SLUBStick:
Arbitrary Memory Writes through Practical Software
Cross-Cache Attacks within the Linux Kernel. In
USENIX Security, 2024.

Lukas Maar, Lukas Giner, Daniel Gruss, and Stefan Man-
gard. When Good Kernel Defenses Go Bad: Reliable
and Stable Kernel Exploits via Defense-Amplified TLB
Side-Channel Leaks. In USENIX Security, 2025.

Aravind Machiry, Nilo Redini, Eric Camellini, Christo-
pher Kruegel, and Giovanni Vigna. SPIDER: Enabling
Fast Patch Propagation in Related Software Repositories.
In S&P, 2020.

Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna.
DR. CHECKER: A Soundy Analysis for Linux Ker-
nel Drivers. In USENIX Security, 2017.

Bill Marczak, Adam Hulcoop, Etienne Maynier,
Bahr Abdul Razzak, Masashi Crete-Nishihata, John

https://project-zero.issues.chromium.org/issues/42451713
https://project-zero.issues.chromium.org/issues/42451713
https://project-zero.issues.chromium.org/issues/42451710
https://project-zero.issues.chromium.org/issues/42451710
https://googleprojectzero.blogspot.com/2024/12/qualcomm-dsp-driver-unexpectedly-excavating-exploit.html
https://googleprojectzero.blogspot.com/2024/12/qualcomm-dsp-driver-unexpectedly-excavating-exploit.html
https://googleprojectzero.blogspot.com/2024/12/qualcomm-dsp-driver-unexpectedly-excavating-exploit.html
https://project-zero.issues.chromium.org/issues/42451715
https://project-zero.issues.chromium.org/issues/42451715
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2024/CVE-2024-44068.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2024/CVE-2024-44068.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2024/CVE-2024-44068.html
https://dirtypipe.cm4all.com/
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/
https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-captured-in-the-wild/
https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-captured-in-the-wild/
https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-captured-in-the-wild/
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T1%20-%20Karsten%20Nohl%20&%20Jakob%20Lell%20-%20Uncovering%20the%20Android%20Patch%20Gap%20Through%20Binary-Only%20Patch%20Level%20Analysis.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T1%20-%20Karsten%20Nohl%20&%20Jakob%20Lell%20-%20Uncovering%20the%20Android%20Patch%20Gap%20Through%20Binary-Only%20Patch%20Level%20Analysis.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T1%20-%20Karsten%20Nohl%20&%20Jakob%20Lell%20-%20Uncovering%20the%20Android%20Patch%20Gap%20Through%20Binary-Only%20Patch%20Level%20Analysis.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T1%20-%20Karsten%20Nohl%20&%20Jakob%20Lell%20-%20Uncovering%20the%20Android%20Patch%20Gap%20Through%20Binary-Only%20Patch%20Level%20Analysis.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T1%20-%20Karsten%20Nohl%20&%20Jakob%20Lell%20-%20Uncovering%20the%20Android%20Patch%20Gap%20Through%20Binary-Only%20Patch%20Level%20Analysis.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T1%20-%20Karsten%20Nohl%20&%20Jakob%20Lell%20-%20Uncovering%20the%20Android%20Patch%20Gap%20Through%20Binary-Only%20Patch%20Level%20Analysis.pdf
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Scott-Railton, and Ron Deibert. Missing Link Ti-
betan Groups Targeted with 1-Click Mobile Exploits,
2019. URL: https://citizenlab.ca/2019/09/
poison-carp-tibetan-groups-targeted-with-
1-click-mobile-exploits/.

Rene Mayrhofer, Jeff Vander Stoep, Chad Brubaker,
Dianne Hackborn, Bram Bonné, Giiliz Seray Tun-
cay, Roger Piqueras Jover, and Michael Specter.
The Android Platform Security Model (2023).
arXiv:1904.05572, 2024.

Man Yue Mo. Fall of the machines: Exploiting
the Qualcomm NPU (neural processing unit) ker-
nel driver, 2021. URL: https://github.blog/
security/vulnerability-research/fall-of-
the-machines-exploiting-the-qualcomm-npu-
neural-processing-unit-kernel-driver/.

Man Yue Mo. One day short of a full chain: Part 1 -
Android Kernel arbitrary code execution, 2021. URL:
https://securitylab.github.com/research/
one_day_short_of_a_fullchain_android/.

Man Yue Mo. Corrupting memory with-
out memory corruption, 2022. URL: https:
//github.blog/security/vulnerability-
research/corrupting-memory-without-
memory-corruption/.

Man Yue Mo. Gaining kernel code execution on
an MTE-enabled Pixel 8, 2024. URL: https:
//github.blog/security/vulnerability-
research/gaining-kernel-code-execution-
on-an-mte-enabled-pixel-8/.

Andy Nguyen. CVE-2021-22555: Turning
x00x00 into 10000%, 2021. URL: https:
//google.github.io/security-research/pocs/
linux/cve-2021-22555/writeup.html.

Lau Notselwyn. Flipping Pages: An analysis of a new
Linux vulnerability in nf_tables and hardened exploita-
tion techniques, 2024. URL: https://pwning.tech/
nftables/.

Donncha O’Cearbhaill and Bill Marczak. Exploit ar-
chaeology a forensic history of in the wild NSO Group
exploits. In Virus Bulletin Conference, 2022.

Maxime Peterlin. Reversing and Exploiting Sam-
sung’s Neural Processing Unit, 2021. URL: https:
//blog.longterm.io/samsung_npu.html.

Alexander Popov. Four Bytes of Power: Ex-
ploiting CVE-2021-26708 in the Linux kernel,
2021. URL: https://a13xp0p0Ov.github.io/2021/
02/09/CVE-2021-26708.html.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

Andrea Possemato, Simone Aonzo, Davide Balzarotti,
and Yanick Fratantonio. Trust, but verify: A longitudinal
analysis of android oem compliance and customization.
In S&P, 2021.

Eloi Sanfelix. A bug collision tale, 2020. URL:
https://labs.bluefrostsecurity.de/files/
OffensiveCon2020_bug_collision_tale.pdf.

Blue Frost Security. Exploiting CVE-2020-0041 -
Part 2: Escalating to root, 2020. URL: https://
labs.bluefrostsecurity.de/blog/2020/04/08/
cve-2020-0041-part-2-escalating-to-root/.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SOK: (State of) The
Art of War: Offensive Techniques in Binary Analysis.
In S&P, 2016.

Maddie Stone. Bad Binder: Android In-
The-Wild Exploit, 2019. URL: https:
//googleprojectzero.blogspot.com/2019/11/
bad-binder-android-in-wild-exploit.html.

Maddie Stone. Detection Deficit: A Year in Review
of 0-days Used In-The-Wild in 2019, 2020. URL:
https://googleprojectzero.blogspot.com/
2020/07/detection-deficit-year-in-review-
of-0.html.

Maddie Stone. In-the-Wild Series: An-
droid Post-Exploitation , 2021. URL:
https://googleprojectzero.blogspot.com/
2021/01/in-wild-series-android-post-
exploitation.html.

Maddie Stone. Déja vu-Inerability — A Year in Review
of 0-days Exploited In-The-Wild in 2020, 2021. URL:
https://googleprojectzero.blogspot.com/
2021/02/deja-vu-lnerability.html.

Maddie Stone. A Very Powerful Clipboard: Analysis
of a Samsung in-the-wild exploit chain, 2022. URL:
https://googleprojectzero.blogspot.com/
2022/11/a-very-powerful-clipboard-
samsung-in-the-wild-exploit-chain.html.

Maddie Stone. The More You Know, The More
You Know You Don’t Know, 2022. URL: https:
//googleprojectzero.blogspot.com/2022/04/
the-more-you-know-more-you-know-you.html.

Maddie Stone. 2022 0-day In-the-Wild
Exploitation...so far, 2023. URL: https:
//googleprojectzero.blogspot.com/2022/
06/2022-0-day-in-wild-exploitationso-
far.html.

https://citizenlab.ca/2019/09/poison-carp-tibetan-groups-targeted-with-1-click-mobile-exploits/
https://citizenlab.ca/2019/09/poison-carp-tibetan-groups-targeted-with-1-click-mobile-exploits/
https://citizenlab.ca/2019/09/poison-carp-tibetan-groups-targeted-with-1-click-mobile-exploits/
https://github.blog/security/vulnerability-research/fall-of-the-machines-exploiting-the-qualcomm-npu-neural-processing-unit-kernel-driver/
https://github.blog/security/vulnerability-research/fall-of-the-machines-exploiting-the-qualcomm-npu-neural-processing-unit-kernel-driver/
https://github.blog/security/vulnerability-research/fall-of-the-machines-exploiting-the-qualcomm-npu-neural-processing-unit-kernel-driver/
https://github.blog/security/vulnerability-research/fall-of-the-machines-exploiting-the-qualcomm-npu-neural-processing-unit-kernel-driver/
https://securitylab.github.com/research/one_day_short_of_a_fullchain_android/
https://securitylab.github.com/research/one_day_short_of_a_fullchain_android/
https://github.blog/security/vulnerability-research/corrupting-memory-without-memory-corruption/
https://github.blog/security/vulnerability-research/corrupting-memory-without-memory-corruption/
https://github.blog/security/vulnerability-research/corrupting-memory-without-memory-corruption/
https://github.blog/security/vulnerability-research/corrupting-memory-without-memory-corruption/
https://github.blog/security/vulnerability-research/gaining-kernel-code-execution-on-an-mte-enabled-pixel-8/
https://github.blog/security/vulnerability-research/gaining-kernel-code-execution-on-an-mte-enabled-pixel-8/
https://github.blog/security/vulnerability-research/gaining-kernel-code-execution-on-an-mte-enabled-pixel-8/
https://github.blog/security/vulnerability-research/gaining-kernel-code-execution-on-an-mte-enabled-pixel-8/
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://pwning.tech/nftables/
https://pwning.tech/nftables/
https://blog.longterm.io/samsung_npu.html
https://blog.longterm.io/samsung_npu.html
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://labs.bluefrostsecurity.de/files/OffensiveCon2020_bug_collision_tale.pdf
https://labs.bluefrostsecurity.de/files/OffensiveCon2020_bug_collision_tale.pdf
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Maddie Stone. The Ups and Downs of
0-days: A Year in Review of 0-days Ex-
ploited In-the-Wild in 2022, 2023. URL:

https://security.googleblog.com/2023/07/
the-ups-and-downs-of-0-days-year-in.html.

Maddie Stone, Jared Semrau, and James Sadowski.
We’re All in this Together: A Year in Review of
Zero-Days Exploited In-the-Wild in 2023, 2024.
URL: https://storage.googleapis.com/gweb-
uniblog-publish-prod/documents/Year_in_
Review_of_ZeroDays.pdf.

Seyed Mohammadjavad Seyed Talebi, Zhihao Yao,
Ardalan Amiri Sani, Zhiyun Qian, and Daniel Austin.
Undo workarounds for kernel bugs. In USENIX Security,
2021.

Zi Fan Tan, Gulshan Singh, and Eugene Rodi-
onov. Attacking Android Binder: Analysis and
Exploitation of CVE-2023-20938, 2024. URL:
https://androidoffsec.withgoogle.com/
posts/attacking-android-binder-analysis-
and-exploitation-of-cve-2023-20938/
#unlink-primitive.

Yong Wang. Ret2page: The Art of Exploiting Use-Afer-
Free Vulnerabilities in the Dedicated Cache, 2022. URL:
https://i.blackhat.com/USA-22/Thursday/US-
22-WANG-Ret2page-The-Art-of-Exploiting-
Use-After-Free-Vulnerabilities-in-the-
Dedicated-Cache.pdf.

Zicheng Wang, Yueqi Chen, and Qingkai Zeng. PET:
Prevent Discovered Errors from Being Triggered in the
Linux Kernel. In USENIX Security, 2023.

Daoyuan Wu, Debin Gao, Eric K. T. Cheng, Yichen
Cao, Jintao Jiang, and Robert H. Deng. Towards under-
standing android system vulnerabilities: Techniques and
insights. In AsiaCCS, 2019.

Le Wu, Xuen Li, and Tim Xia. ExplosION: The Hidden
Mines in the Android ION Driver, 2022. URL: https:
//i.blackhat.com/Asia-22/Friday-Materials/
AS-22-Wu-ExplosION-The-Hidden-Mines.pdf.

Le Wu and Qi Zhang. Game of Cross Cache: Let’s
win it in a more effective way!, 2024. URL: https:
//i.blackhat.com/Asia-24/Presentations/
Asia-24-Wu-Game-of-Cross-Cache.pdf.

Nicolas Wu. Dirty Pagetable: A Novel Exploitation
Technique To Rule Linux Kernel, 2023. URL:
https://yanglingxi1993.github.io/dirty_
pagetable/dirty_pagetable.html.

[85]

[86]

[87]

(88]

(89]

[90]

[91]

[92]

[93]

[94]

[95]

Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KE-
PLER: Facilitating Control-flow Hijacking Primitive
Evaluation for Linux Kernel Vulnerabilities. In USENIX
Security, 2019.

Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards Facilitating Ex-
ploit Generation for Kernel Use-After-Free Vulnerabili-
ties. In USENIX Security, 2018.

Xuan Xing, Eugene Rodionov, Jon Bottarini, Adam
Bacchus, Amit Chaudhary, Lyndon Fawcett, and
Joseph Artgole. Google & Arm - Raising The
Bar on GPU Security, 2024. URL: https:
//security.googleblog.com/2024/09/google-
arm-raising-bar-on-gpu-security.html.

Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi
Xie, Yuanyuan Zhang, and Dawu Gu. From collision to
exploitation: Unleashing use-after-free vulnerabilities
in linux kernel. In CCS, 2015.

Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao
Xia, Chenfu Bao, Zhi Wang, and Yang Liu. Automatic
Hot Patch Generation for Android Kernels. In USENIX
Security, 2020.

Kyle Zeng, Yueqi Chen, Hachyun Cho, Xinyu Xing,
Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.
Playing for K(H)eaps: Understanding and Improving
Linux Kernel Exploit Reliability. In USENIX Security,
2022.

Kyle Zeng, Zhenpeng Lin, Kangjie Lu, Xinyu Xing,
Ruoyu Wang, Adam Doupé, Yan Shoshitaishvili, and
Tiffany Bao. RetSpill: Igniting User-Controlled Data to
Burn Away Linux Kernel Protections. In CCS, 2023.

Google Project Zero. Qualcomm KGSL: re-
claimed / in-reclaim objects can still be mapped
into VBOs, 2024. URL: https://project-
zero.issues.chromium.org/issues/42451701.

Hang Zhang and Zhiyun Qian. Precise and Accurate
Patch Presence Test for Binaries. In USENIX Security,
2018.

Ye Zhang, Le Wu, Shupeng Gao, and Zheng
Huang. Attacking NPUs of Multiple Platforms,
2023. URL: https://i.blackhat.com/EU-23/
Presentations/EU-23-Zhang-Attacking-NPUs-
of-Multiple-Platforms.pdf.

Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau.
An investigation of the android kernel patch ecosystem.
In USENIX Security, 2021.

https://security.googleblog.com/2023/07/the-ups-and-downs-of-0-days-year-in.html
https://security.googleblog.com/2023/07/the-ups-and-downs-of-0-days-year-in.html
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Year_in_Review_of_ZeroDays.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Year_in_Review_of_ZeroDays.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Year_in_Review_of_ZeroDays.pdf
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/Asia-22/Friday-Materials/AS-22-Wu-ExplosION-The-Hidden-Mines.pdf
https://i.blackhat.com/Asia-22/Friday-Materials/AS-22-Wu-ExplosION-The-Hidden-Mines.pdf
https://i.blackhat.com/Asia-22/Friday-Materials/AS-22-Wu-ExplosION-The-Hidden-Mines.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://security.googleblog.com/2024/09/google-arm-raising-bar-on-gpu-security.html
https://security.googleblog.com/2024/09/google-arm-raising-bar-on-gpu-security.html
https://security.googleblog.com/2024/09/google-arm-raising-bar-on-gpu-security.html
https://project-zero.issues.chromium.org/issues/42451701
https://project-zero.issues.chromium.org/issues/42451701
https://i.blackhat.com/EU-23/Presentations/EU-23-Zhang-Attacking-NPUs-of-Multiple-Platforms.pdf
https://i.blackhat.com/EU-23/Presentations/EU-23-Zhang-Attacking-NPUs-of-Multiple-Platforms.pdf
https://i.blackhat.com/EU-23/Presentations/EU-23-Zhang-Attacking-NPUs-of-Multiple-Platforms.pdf

Table 7: Devices which are susceptible to n-day vulnerabilities with the commit message shown in Listings 6 to 10. The symbol
v refers to susceptible, T refers to fixed in October 2024, 11 refers to fixed in November 2024, and v refers to not tested.

Vendor Device Model OOB read UAF access ID
vulnl (see 6) vuln2 (see 7) vuln3 (see 8) vulnd (see 9) vuln5 (see 10)
Galaxy S23 SM-S911B T T T T T
Galaxy S23+ SM-S916B T T e T T
Samsung Galaxy S23 Ultra SM-S918B T T w T T
Galaxy Z Flip5 SM-F731B T T e T T
Galaxy Z Fold5 SM-F946B T T w T T
Mix Fold 3 Babylon 4 v e v v
Redmi K70, Poco F6 Pro Vermeer 1t v w Tt v
Xiaomi 13 Ultra Ishtar 4 v e v v
13 Pro Nuwa in v i e tt 4
13 Fuxi Tt v e Tt v
Asus ROG Phone 7 Ultimate, ROG Phone 7 AI2205 v v * v v
1 commit a6b25a6b8b9d1d6dfeleb743ee39de21485d66da
2 Author: Ramesh Nallagopu <quic_rnallago@quicinc.com>
3 Date: Fri Jun 28 22:17:36 2024 +0530
4 1 commit £98ae73093949e9e12f64f28bd6103b5£941d32e
5 dsp-kernel: Fix to avoid untrusted pointer dereference 2 Author: Santosh <quic_ssakore@quicinc.com>
6 3 Date: Tue Nov 19 10:54:19 2024 +0530
7 Currently, the compat ioctl call distinguishes itself 4 X X
8 using a global flag. If a user sends a compat ioctl call 3 dsp-kernel: Add attribute and flag checks during map
9 followed by a normal ioctl call, it may result in using a 6 creation
10 user passed address as a kernel address in the 7 X . . X
11 fastrpcdriver. To address this issue, consider localizing 8 A persistence map is expected to hold refs=2 during its
2 the compat flag for the ioctl call. 9 creation. However, the Fuzzy test can create a persistence
10 map by configuring a mismatch between attributes and flags
Listing 6: Vulnl: Git commit message of the OOB read 1 using the KEEP MAP attribute and FD NOMAP flags. This sets
.y 12 the map reference count to 1. The user then calls
Vlﬂnerab]hty CVE-2024-21455 [32] 13 fastrpc_internal_munmap_fd to free the map since it doesnt
14 check flags, which can cause a use-after-free (UAF) for
15 the file map and shared buffer. Add a check to restrict
16 DMA handle maps with invalid attributes.

1 commit 6dabb5la3af6£217c1729452fa963d0d3568058ec
2 Author: Abhishek Singh <quic_abhishes@quicinc.com>

3 Date: Tue Mar 5 17:19:52 2024 +0530

4

5 dsp-kernel: use-after-free (UAF) in global maps

6

7 Currently, remote heap maps get added to the global list
8 before the fastrpc_internal _mmap function completes the
9 mapping. Meanwhile, the fastrpc_internal_munmap function
10 accesses the map, starts unmapping, and frees the map

11 before the fastrpc_internal_mmap function completes,

12 resulting in a use-after-free (UAF) issue. Add the map to
13 the list after the fastrpc_internal_mmap function

14 completes the mapping.

Listing 7: Vuln2: Git commit message of the first UAF
vulnerability CVE-2024-33060 [34].

1 commit 2096d42a680640f9fcc02272bf58f9cc7fa74576
2 Author: ANANDU KRISHNAN E <quic_anane@quicinc.com>
3 Date: Wed Aug 14 10:39:55 2024 +0530
4
msm: adsprpc: Avoid taking reference for group_info

which increases the usage refcount. If the IOCTL using the
get_current_groups API is called many times, the usage
10 counter overflows. To avoid this, access group info
11 without taking a reference. A reference is not required as
12 group info is not released during the IOCTL call.

5

6

7 Currently, the get_current_groups API accesses group info,
8

9

Listing 8: Vuln3: Git commit message of second UAF
vulnerability CVE-2024-38402 [21].

Listing 9: Vuln4: Git commit message of the third UAF
vulnerability CVE-2024-49848 [30].

1 commit 29cbad25d9bf36341131dcc7dfff75b4255d2111
2 Author: Abhishek Singh <quic_abhishes@quicinc.com>

3 Date: Fri Jun 21 16:04:09 2024 +0530

4

5 dsp-kernel: Do not search the global map in the process-
6 specific list

7

8 If a user makes the ioctl call for the

9 fastrpc_internal_mmap with the global map flag, fd, and va
10 corresponding to some map already present in the process-
11 specific list, then this map present in the process-

12 specific list could be added to the global list. Because
13 global maps are also searched in the process-specific

14 list. If a map gets removed from the global list and

15 another concurrent thread is using the same map for a

16 process-specific use case, it could lead to a use-after-
17 free. Avoid searching the global map in the process-

18 specific list.

Listing 10: VulnS: Git commit message of the ID vulnerability
CVE-2024-33060 wrongly assigned [31].

	Introduction
	Background
	High-Level Overview
	Attack Surface Analysis of Android Kernels
	Determining the Minimum Kernel Attack Surface
	Analyzing SELinux Policies
	Analyzing Linux Permission Settings
	Matching Kernel Drivers

	Large-Scale Analysis
	Validity of Analysis

	Analysis of N-Day Vulnerabilities
	N-Day Vulnerability Identification
	N-Day Analysis

	Detecting N-Day Patches in Kernel Drivers
	Patch Detection Approach
	Large-Scale Analysis on Patch Inclusion
	Representative Subset of N-Day Vulns
	Analysis
	Validity Check of Patch Detection

	Discussion and Related Work
	Conclusion
	Acknowledgements
	Ethics Considerations
	Open Science

