
SLUBStick:
Arbitrary Memory Writes through Practical Software Cross-Cache Attacks within the Linux Kernel

Lukas Maar
Graz University of Technology

Stefan Gast
Graz University of Technology

Martin Unterguggenberger
Graz University of Technology

Mathias Oberhuber
Graz University of Technology

Stefan Mangard
Graz University of Technology

Introduction

Background

High-Level Overview

Timing Side Channel on the SLUB Allocator

Pivoting Kernel Heap Vulnerabilities

Arbitrary Memory Read/Write

In recent years, the number of vulnerabilities as well as defenses in the Linux
kernel has increased significantly. This results in a situation where many
kernel vulnerabilities exist, while their exploitation is difficult.

We present a new kernel exploit technique, SLUBStick, which allows bad
actors to fully compromise Linux systems with state-of-the-art kernel defenses
enabled. We show the practicality of SLUBStick by implementing 9 exploits
and compromising Ubuntu 22.04 LTS 9 times.

Kernel Memory Management. Two allocators:
- Buddy allocator: splits the entire memory space into page-order memory
 chunks and stores them in page-order free lists.
- SLUB allocator: uses chunks from Buddy and stores free memory slots

 for object allocation in allocator caches.

Object Allocation. Applications use the SLUB allocator caches:
- Fast path: on a memory allocation (), the allocator cache has free

 memory slots () and returns one slot ().
- Slow path: on a memory allocation (), the allocator cache has no free

memory slots (), so it resorts to Buddy () and refills the
memory slots (), returning one to the application ().

Heap Segregation. Linux uses different allocator caches for
different security contexts, so vulnerable and security-critical
objects never share the same cache. Hence, a UAF write to a
vulnerable object cannot be directly exploited to overwrite
security-critical objects.

Cross-Cache Reuse. A bad actor exploits Buddy's memory reuse. They free
all memory chunk slots from an allocator cache (e.g., file), causing to
recycle this chunk. They then reclaim the chunk for security-critical objects
(e.g., msg_msg).

This cross-cache reuse is mostly
unreliable and impractical, with a
success rate of 40%, where un-
successful attempts may crash.

SLUBStick exploits a kernel heap vulnerability to obtain a write primitive for
a vulnerable object at a given time. It then performs a cross-cache reuse,
where the write primitive refers to a page table. Finally, it triggers the write to
corrupt a page-table entry, granting its user address with arbitrary read/write
access to the underlying physical page.

Technical Challenges. SLUBStick overcomes three challenges:
SLUBStick exploits a heap vulnerability for a page-table manipulation, by
first creating a dangling pointer. It then reclaims the pointer's memory for
container, where writing via copy_from_user causes a slow page
fault. SLUBStick recycles the cache's page and reclaims it as a page table,
where copying then overwrites page-table entries.

SLUBStick makes cross-cache reuse reliable and practical by performing a
timing side channel on SLUB. It measures the syscall timings of allocations
and distinguishes between fast (-) from slow (-) paths, allowing objects
to be grouped based on their chunk.

- Fast path (-): ~1,100 time stamps.
- Slow path (-): >2,500 time stamps.

Group allocated objects based on
their chunk and free all grouped
objects for cross-cache reuse.

- Ubuntu 22.04 LTS
- Linux kernel v6.2.
- Multiple generic caches.
- Tested on idle and noisy
 systems.
- Success rates well above
 40%.

Conclusion

SLUBStick converts a single-shot page-table manipulation to an arbitrary
physical read/write: It triggers the PUD write so that the user address with
pude' refers to the first physical GB. It then allocates PT' and overwrites a PT'
entry with pte'. The user address with pte' now refers to an arbitrary physical
location, allowing the arbitrary physical read/write.

Timing side channel:
- Makes software cross-cache reuses practical.

Primitive convertions:
- Limited heap write to page-table manipulation.
- Single-shot page-table manipulation to an
 arbitrary physical read/write primitive.

Implemented 9 POC exploits.

C1

C2

C3

C1 Cross-cache reuse attacks on generic caches are unreliable.

C2 Most kernel heap vulnerabilities only grant weak write primitives.

C3 From page-table manipulation to an arbitrary read/write.

