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In recent years, the number of vulnerabilities as well as defenses in the Linux 
kernel has increased significantly. This results in a situation where many 
kernel vulnerabilities exist, while their exploitation is difficult.

We present a new kernel exploit technique, SLUBStick, which allows bad 
actors to fully compromise Linux systems with state-of-the-art kernel defenses 
enabled. We show the practicality of SLUBStick by implementing 9 exploits 
and compromising Ubuntu 22.04 LTS 9 times.

Kernel Memory Management. Two allocators:
- Buddy allocator: splits the entire memory space into page-order memory
      chunks and stores them in page-order free lists.
- SLUB allocator: uses chunks from Buddy and stores free memory slots

    for object allocation in allocator caches.

Object Allocation. Applications use the SLUB allocator caches:
- Fast path: on a memory allocation ( ), the allocator cache has free

    memory slots ( ) and returns one slot ( ).
- Slow path: on a memory allocation ( ), the allocator cache has no free

memory slots ( ), so it resorts to Buddy ( ) and refills the
memory slots ( ), returning one to the application ( ).

Heap Segregation. Linux uses different allocator caches for 
different security contexts, so vulnerable and security-critical 
objects never share the same cache. Hence, a UAF write to a 
vulnerable object cannot be directly exploited to overwrite 
security-critical objects.

Cross-Cache Reuse. A bad actor exploits Buddy's memory reuse. They free 
all memory chunk slots from an allocator cache (e.g., file), causing to 
recycle this chunk. They then reclaim the chunk for security-critical objects 
(e.g., msg_msg).

This cross-cache reuse is mostly
unreliable and impractical, with a
success rate of 40%, where un-
successful attempts may crash.

SLUBStick exploits a kernel heap vulnerability to obtain a write primitive for 
a vulnerable object at a given time. It then performs a cross-cache reuse, 
where the write primitive refers to a page table. Finally, it triggers the write to 
corrupt a page-table entry, granting its user address with arbitrary read/write 
access to the underlying physical page.

Technical Challenges. SLUBStick overcomes three challenges:
SLUBStick exploits a heap vulnerability for a page-table manipulation, by 
first creating a dangling pointer. It then reclaims the pointer's memory for 
container, where writing via copy_from_user causes a slow page 
fault. SLUBStick recycles the cache's page and reclaims it as a page table, 
where copying then overwrites page-table entries.

SLUBStick makes cross-cache reuse reliable and practical by performing a 
timing side channel on SLUB. It measures the syscall timings of allocations 
and distinguishes between fast ( - ) from slow ( - ) paths, allowing objects 
to be grouped based on their chunk.

- Fast path ( - ): ~1,100 time stamps.
- Slow path ( - ): >2,500 time stamps.

Group allocated objects based on 
their chunk and free all grouped 
objects for cross-cache reuse.

- Ubuntu 22.04 LTS
- Linux kernel v6.2.
- Multiple generic caches.
- Tested on idle and noisy
   systems.
- Success rates well above
   40%.

Conclusion

SLUBStick converts a single-shot page-table manipulation to an arbitrary 
physical read/write: It triggers the PUD write so that the user address with 
pude' refers to the first physical GB. It then allocates PT' and overwrites a PT' 
entry with pte'. The user address with pte' now refers to an arbitrary physical 
location, allowing the arbitrary physical read/write.

Timing side channel:
- Makes software cross-cache reuses practical.

Primitive convertions:
- Limited heap write to page-table manipulation.
- Single-shot page-table manipulation to an
  arbitrary physical read/write primitive.

Implemented 9 POC exploits.
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C1  Cross-cache reuse attacks on generic caches are unreliable.

C2  Most kernel heap vulnerabilities only grant weak write primitives.

C3  From page-table manipulation to an arbitrary read/write.


